Skip to main content

Uncertainty Quantification In Multiscale Materials Modeling

Download Uncertainty Quantification In Multiscale Materials Modeling Full eBooks in PDF, EPUB, and kindle. Uncertainty Quantification In Multiscale Materials Modeling is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling Book
Author : Yan Wang,David L. McDowell
Publisher : Woodhead Publishing
Release : 2020-03-10
ISBN : 008102942X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Workshop on Uncertainty Quantification and Multiscale Materials Modeling

Workshop on Uncertainty Quantification and Multiscale Materials Modeling Book
Author : Anonim
Publisher : Unknown
Release : 2011
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download Workshop on Uncertainty Quantification and Multiscale Materials Modeling book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Multiscale Modeling and Uncertainty Quantification of Materials and Structures Book
Author : Manolis Papadrakakis,George Stefanou
Publisher : Springer
Release : 2014-07-02
ISBN : 3319063316
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.

Uncertainty Quantification and Management for Multi scale Nuclear Materials Modeling

Uncertainty Quantification and Management for Multi scale Nuclear Materials Modeling Book
Author : Anonim
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

2011 2012 Assessment of the Army Research Laboratory

2011 2012 Assessment of the Army Research Laboratory Book
Author : Army Research Laboratory Technical Assessment Board,Laboratory Assessments Board,Division on Engineering and Physical Sciences,National Research Council
Publisher : National Academies Press
Release : 2013-04-23
ISBN : 0309269008
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The charge of the Army Research Laboratory Technical Assessment Board (ARLTAB) is to provide biennial assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL). The ARLTAB is assisted by six panels, each of which focuses on the portion of the ARL program conducted by one of ARL's six directorates1. When requested to do so by ARL, the ARLTAB also examines work that cuts across the directorates. For example, during 2011-2012, ARL requested that the ARLTAB examine crosscutting work in the areas of autonomous systems and network science. The overall quality of ARL's technical staff and their work continues to be impressive. Staff continue to demonstrate clear, passionate mindfulness of the importance of transitioning technology to support immediate and longer-term Army needs. Their involvement with the wider scientific and engineering community continues to expand. Such continued involvement and collaboration are fundamentally important for ARL's scientific and technical activities and need to include the essential elements of peer review and interaction through publications and travel to attend professional meetings, including international professional meetings. In general, ARL is working very well within an appropriate research and development niche and has been demonstrating significant accomplishments, as exemplified in the following discussion, which also addresses opportunities and challenges.

Uncertainty Quantification

Uncertainty Quantification Book
Author : Christian Soize
Publisher : Springer
Release : 2017-04-24
ISBN : 3319543393
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Multiscale Methods

Multiscale Methods Book
Author : Jacob Fish
Publisher : Oxford University Press on Demand
Release : 2010
ISBN : 0199233853
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Uncertainty Quantification in Laminated Composites

Uncertainty Quantification in Laminated Composites Book
Author : Sudip Dey,Tanmoy Mukhopadhyay,Sondipon Adhikari
Publisher : CRC Press
Release : 2018-09-19
ISBN : 1498784461
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.

Multiscale Modelling and Simulation

Multiscale Modelling and Simulation Book
Author : Sabine Attinger,Petros Koumoutsakos
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 3642187560
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Universit della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques

SIAM Journal on Scientific Computing

SIAM Journal on Scientific Computing Book
Author : Anonim
Publisher : Unknown
Release : 2009
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download SIAM Journal on Scientific Computing book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Predictive Theoretical and Computational Approaches for Additive Manufacturing

Predictive Theoretical and Computational Approaches for Additive Manufacturing Book
Author : National Academies of Sciences, Engineering, and Medicine,Policy and Global Affairs,Board on International Scientific Organizations,U.S. National Committee on Theoretical and Applied Mechanics
Publisher : National Academies Press
Release : 2016-12-21
ISBN : 0309449758
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Additive manufacturing (AM) methods have great potential for promoting transformative research in many fields across the vast spectrum of engineering and materials science. AM is one of the leading forms of advanced manufacturing which enables direct computer-aided design (CAD) to part production without part-specific tooling. In October 2015 the National Academies of Sciences, Engineering, and Medicine convened a workshop of experts from diverse communities to examine predictive theoretical and computational approaches for various AM technologies. While experimental workshops in AM have been held in the past, this workshop uniquely focused on theoretical and computational approaches and involved areas such as simulation-based engineering and science, integrated computational materials engineering, mechanics, materials science, manufacturing processes, and other specialized areas. This publication summarizes the presentations and discussions from the workshop.

Computational Methods in Applied Sciences

Computational Methods in Applied Sciences Book
Author : Agnieszka Szczotok,Aneta G?dek-Moszczak,Jacek Pietraszek,Norbert Radek,Renata Dwornicka
Publisher : Trans Tech Publications Ltd
Release : 2015-01-12
ISBN : 3038267635
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Collection of selected, peer reviewed papers from the International Conference on Computational Methods in Applied Sciences (CMAS 2014), December 17-18, 2014, Kraków, Poland. The 18 papers are grouped as follows: I. Computational Science as a Key Element of Engineering Progress; II. Computational Methods and its Application; III. Applied Mechanics and Terotechnology; IV. Biotechnology Applications

Integrated Computational Materials Engineering ICME

Integrated Computational Materials Engineering  ICME  Book
Author : Somnath Ghosh,Christopher Woodward,Craig Przybyla
Publisher : Springer Nature
Release : 2020-03-20
ISBN : 3030405621
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

​This book introduces research advances in Integrated Computational Materials Engineering (ICME) that have taken place under the aegis of the AFOSR/AFRL sponsored Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University. Its author team consists of leading researchers in ICME from prominent academic institutions and the Air Force Research Laboratory. The book examines state-of-the-art advances in physics-based, multi-scale, computational-experimental methods and models for structural materials like polymer-matrix composites and metallic alloys. The book emphasizes Ni-based superalloys and epoxy matrix carbon-fiber composites and encompasses atomistic scales, meso-scales of coarse-grained models and discrete dislocations, and micro-scales of poly-phase and polycrystalline microstructures. Other critical phenomena investigated include the relationship between microstructural morphology, crystallography, and mechanisms to the material response at different scales; methods of identifying representative volume elements using microstructure and material characterization, and robust deterministic and probabilistic modeling of deformation and damage. Encompassing a slate of topics that enable readers to comprehend and approach ICME-related issues involved in predicting material performance and failure, the book is ideal for mechanical, civil, and aerospace engineers, and materials scientists, in in academic, government, and industrial laboratories.

Stochastic Multiscale Modeling of Polycrystalline Materials

Stochastic Multiscale Modeling of Polycrystalline Materials Book
Author : Bin Wen
Publisher : Unknown
Release : 2013
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of lowdimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: - Development of data-driven reduced-order representations of microstruc- ture variations to construct the admissible space of random polycrystalline microstructures. - Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. - Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and provides a new outlook to multiscale materials modeling accounting for microstructure and process uncertainties. Predictive materials modeling will accelerate the development of new materials and processes for critical applications in industry.

Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems Book
Author : Ivan G. Graham,Thomas Y. Hou,Omar Lakkis,Robert Scheichl
Publisher : Springer Science & Business Media
Release : 2012-01-05
ISBN : 3642220614
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Practical Multiscaling

Practical Multiscaling Book
Author : Jacob Fish
Publisher : John Wiley & Sons
Release : 2013-09-03
ISBN : 1118534859
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.

Assessing the Reliability of Complex Models

Assessing the Reliability of Complex Models Book
Author : National Research Council,Division on Engineering and Physical Sciences,Board on Mathematical Sciences and Their Applications,Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification
Publisher : National Academies Press
Release : 2012-07-26
ISBN : 0309256348
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Advances in computing hardware and algorithms have dramatically improved the ability to simulate complex processes computationally. Today's simulation capabilities offer the prospect of addressing questions that in the past could be addressed only by resource-intensive experimentation, if at all. Assessing the Reliability of Complex Models recognizes the ubiquity of uncertainty in computational estimates of reality and the necessity for its quantification. As computational science and engineering have matured, the process of quantifying or bounding uncertainties in a computational estimate of a physical quality of interest has evolved into a small set of interdependent tasks: verification, validation, and uncertainty of quantification (VVUQ). In recognition of the increasing importance of computational simulation and the increasing need to assess uncertainties in computational results, the National Research Council was asked to study the mathematical foundations of VVUQ and to recommend steps that will ultimately lead to improved processes. Assessing the Reliability of Complex Models discusses changes in education of professionals and dissemination of information that should enhance the ability of future VVUQ practitioners to improve and properly apply VVUQ methodologies to difficult problems, enhance the ability of VVUQ customers to understand VVUQ results and use them to make informed decisions, and enhance the ability of all VVUQ stakeholders to communicate with each other. This report is an essential resource for all decision and policy makers in the field, students, stakeholders, UQ experts, and VVUQ educators and practitioners.

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics Book
Author : Kurt Binder
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 3662028557
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.

Multiscale Finite Element Methods

Multiscale Finite Element Methods Book
Author : Yalchin Efendiev,Thomas Y. Hou
Publisher : Springer Science & Business Media
Release : 2009-01-10
ISBN : 0387094962
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.