Skip to main content

Trends In Deep Learning Methodologies

In Order to Read Online or Download Trends In Deep Learning Methodologies Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Trends in Deep Learning Methodologies

Trends in Deep Learning Methodologies Book
Author : Vincenzo Piuri,Sandeep Raj,Angelo Genovese,Rajshree Srivastava
Publisher : Academic Press
Release : 2020-12-01
ISBN : 0128232684
Language : En, Es, Fr & De

GET BOOK

Book Description :

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Provides insights into the theory, algorithms, implementation and the application of deep learning techniques Covers a wide range of applications of deep learning across smart healthcare and smart engineering Investigates the development of new models and how they can be exploited to find appropriate solutions

Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches

Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches Book
Author : K. Gayathri Devi,Mamata Rath,Nguyen Thi Dieu Linh
Publisher : CRC Press
Release : 2020-10-08
ISBN : 1000179532
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning

Machine Learning Applications

Machine Learning Applications Book
Author : Rik Das,Siddhartha Bhattacharyya,Sudarshan Nandy
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2020-04-20
ISBN : 3110610981
Language : En, Es, Fr & De

GET BOOK

Book Description :

The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.

Deep Learning Fundamentals Theory and Applications

Deep Learning  Fundamentals  Theory and Applications Book
Author : Kaizhu Huang,Amir Hussain,Qiu-Feng Wang,Rui Zhang
Publisher : Springer
Release : 2019-02-15
ISBN : 303006073X
Language : En, Es, Fr & De

GET BOOK

Book Description :

The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field. This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.

Adversary Aware Learning Techniques and Trends in Cybersecurity

Adversary Aware Learning Techniques and Trends in Cybersecurity Book
Author : Prithviraj Dasgupta,Joseph B. Collins,Ranjeev Mittu
Publisher : Springer Nature
Release : 2021-01-22
ISBN : 3030556921
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.

The Development of Deep Learning Technologies

The Development of Deep Learning Technologies Book
Author : Chinese Academy of Engineering
Publisher : Springer
Release : 2020-08-14
ISBN : 9789811545832
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is a part of the Blue Book series “Research on the Development of Electronic Information Engineering Technology in China,” which explores the cutting edge of deep learning studies. A subfield of machine learning, deep learning differs from conventional machine learning methods in its ability to learn multiple levels of representation and abstraction by using several layers of nonlinear modules for feature extraction and transformation. The extensive use and huge success of deep learning in speech, CV, and NLP have led to significant advances toward the full materialization of AI. Focusing on the development of deep learning technologies, this book also discusses global trends, the status of deep learning development in China and the future of deep learning.

Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches

Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches Book
Author : K. Gayathri Devi,Mamata Rath,Nguyen Thi Dieu Linh
Publisher : CRC Press
Release : 2020-10-07
ISBN : 1000179516
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning

Handbook of Research on Machine Learning Applications and Trends Algorithms Methods and Techniques

Handbook of Research on Machine Learning Applications and Trends  Algorithms  Methods  and Techniques Book
Author : Olivas, Emilio Soria,Guerrero, Jos‚ David Mart¡n,Martinez-Sober, Marcelino,Magdalena-Benedito, Jose Rafael,Serrano L¢pez, Antonio Jos‚
Publisher : IGI Global
Release : 2009-08-31
ISBN : 1605667676
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book investiges machine learning (ML), one of the most fruitful fields of current research, both in the proposal of new techniques and theoretic algorithms and in their application to real-life problems"--Provided by publisher.

The Development of Deep Learning Technologies

The Development of Deep Learning Technologies Book
Author : China Info & Comm Tech Grp Corp
Publisher : Springer Nature
Release : 2020-07-13
ISBN : 9811545847
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is a part of the Blue Book series “Research on the Development of Electronic Information Engineering Technology in China,” which explores the cutting edge of deep learning studies. A subfield of machine learning, deep learning differs from conventional machine learning methods in its ability to learn multiple levels of representation and abstraction by using several layers of nonlinear modules for feature extraction and transformation. The extensive use and huge success of deep learning in speech, CV, and NLP have led to significant advances toward the full materialization of AI. Focusing on the development of deep learning technologies, this book also discusses global trends, the status of deep learning development in China and the future of deep learning.

Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems

Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems Book
Author : K. Suganthi,R. Karthik,G. Rajesh,Peter Ho Chiung Ching
Publisher : CRC Press
Release : 2021-09-14
ISBN : 1000441814
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book offers the latest advances and results in the fields of Machine Learning and Deep Learning for Wireless Communication and provides positive and critical discussions on the challenges and prospects. It provides a broad spectrum in understanding the improvements in Machine Learning and Deep Learning that are motivating by the specific constraints posed by wireless networking systems. The book offers an extensive overview on intelligent Wireless Communication systems and its underlying technologies, research challenges, solutions, and case studies. It provides information on intelligent wireless communication systems and its models, algorithms and applications. The book is written as a reference that offers the latest technologies and research results to various industry problems.

Modern Approaches in Machine Learning and Cognitive Science A Walkthrough

Modern Approaches in Machine Learning and Cognitive Science  A Walkthrough Book
Author : Vinit Kumar Gunjan
Publisher : Springer Nature
Release : 2021-09-22
ISBN : 3030682919
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Modern Approaches in Machine Learning and Cognitive Science A Walkthrough book written by Vinit Kumar Gunjan, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning Book
Author : Solanki, Arun,Kumar, Sandeep,Nayyar, Anand
Publisher : IGI Global
Release : 2019-12-13
ISBN : 1522596453
Language : En, Es, Fr & De

GET BOOK

Book Description :

As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.

Machine Learning

Machine Learning Book
Author : Sergios Theodoridis
Publisher : Academic Press
Release : 2020-02-19
ISBN : 0128188049
Language : En, Es, Fr & De

GET BOOK

Book Description :

Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes. Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more

AI and Deep Learning in Biometric Security

AI and Deep Learning in Biometric Security Book
Author : Gaurav Jaswal,Vivek Kanhangad,Raghavendra Ramachandra
Publisher : CRC Press
Release : 2021-03-22
ISBN : 1000291669
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.

Deep Learning and Big Data for Intelligent Transportation

Deep Learning and Big Data for Intelligent Transportation Book
Author : Khaled R. Ahmed
Publisher : Springer Nature
Release : 2021-09-22
ISBN : 3030656616
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Deep Learning and Big Data for Intelligent Transportation book written by Khaled R. Ahmed, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Deep Learning in Biomedical and Health Informatics

Deep Learning in Biomedical and Health Informatics Book
Author : M. A. Jabbar,Ajith Abraham,Onur Dogan,Ana Maria Madureira,Sanju Tiwari
Publisher : CRC Press
Release : 2021-09-27
ISBN : 1000429083
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides a proficient guide on the relationship between Artificial Intelligence (AI) and healthcare and how AI is changing all aspects of the healthcare industry. It also covers how deep learning will help in diagnosis and the prediction of disease spread. The editors present a comprehensive review of research applying deep learning in health informatics in the fields of medical imaging, electronic health records, genomics, and sensing, and highlights various challenges in applying deep learning in health care. This book also includes applications and case studies across all areas of AI in healthcare data. The editors also aim to provide new theories, techniques, developments, and applications of deep learning, and to solve emerging problems in healthcare and other domains. This book is intended for computer scientists, biomedical engineers, and healthcare professionals researching and developing deep learning techniques. In short, the volume : Discusses the relationship between AI and healthcare, and how AI is changing the health care industry. Considers uses of deep learning in diagnosis and prediction of disease spread. Presents a comprehensive review of research applying deep learning in health informatics across multiple fields. Highlights challenges in applying deep learning in the field. Promotes research in ddeep llearning application in understanding the biomedical process. Dr.. M.A. Jabbar is a professor and Head of the Department AI&ML, Vardhaman College of Engineering, Hyderabad, Telangana, India. Prof. (Dr.) Ajith Abraham is the Director of Machine Intelligence Research Labs (MIR Labs), Auburn, Washington, USA. Dr.. Onur Dogan is an assistant professor at İzmir Bakırçay University, Turkey. Prof. Dr. Ana Madureira is the Director of The Interdisciplinary Studies Research Center at Instituto Superior de Engenharia do Porto (ISEP), Portugal. Dr.. Sanju Tiwari is a senior researcher at Universidad Autonoma de Tamaulipas, Mexico.

Advanced Deep Learning with R

Advanced Deep Learning with R Book
Author : Bharatendra Rai
Publisher : Packt Publishing Ltd
Release : 2019-12-17
ISBN : 1789534984
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key Features Implement deep learning algorithms to build AI models with the help of tips and tricks Understand how deep learning models operate using expert techniques Apply reinforcement learning, computer vision, GANs, and NLP using a range of datasets Book Description Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples. What you will learn Learn how to create binary and multi-class deep neural network models Implement GANs for generating new images Create autoencoder neural networks for image dimension reduction, image de-noising and image correction Implement deep neural networks for performing efficient text classification Learn to define a recurrent convolutional network model for classification in Keras Explore best practices and tips for performance optimization of various deep learning models Who this book is for This book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to develop their skills and knowledge to implement deep learning techniques and algorithms using the power of R. A solid understanding of machine learning and working knowledge of the R programming language are required.

Handbook of Research on Machine Learning Innovations and Trends

Handbook of Research on Machine Learning Innovations and Trends Book
Author : Hassanien, Aboul Ella,Gaber, Tarek
Publisher : IGI Global
Release : 2017-04-03
ISBN : 1522522301
Language : En, Es, Fr & De

GET BOOK

Book Description :

Continuous improvements in technological applications have allowed more opportunities to develop automated systems. This not only leads to higher success in smart data analysis, but it increases the overall probability of technological progression. The Handbook of Research on Machine Learning Innovations and Trends is a key resource on the latest advances and research regarding the vast range of advanced systems and applications involved in machine intelligence. Highlighting multidisciplinary studies on decision theory, intelligent search, and multi-agent systems, this publication is an ideal reference source for professionals and researchers working in the field of machine learning and its applications.

PRICAI 2019 Trends in Artificial Intelligence

PRICAI 2019  Trends in Artificial Intelligence Book
Author : Abhaya C. Nayak,Alok Sharma
Publisher : Springer Nature
Release : 2019-08-22
ISBN : 3030298949
Language : En, Es, Fr & De

GET BOOK

Book Description :

This three-volume set LNAI 11670, LNAI 11671, and LNAI 11672 constitutes the thoroughly refereed proceedings of the 16th Pacific Rim Conference on Artificial Intelligence, PRICAI 2019, held in Cuvu, Yanuca Island, Fiji, in August 2019. The 111 full papers and 13 short papers presented in these volumes were carefully reviewed and selected from 265 submissions. PRICAI covers a wide range of topics such as AI theories, technologies and their applications in the areas of social and economic importance for countries in the Pacific Rim.

Disruptive Trends in Computer Aided Diagnosis

Disruptive Trends in Computer Aided Diagnosis Book
Author : Rik Das,Sudarshan Nandy,Siddhartha Bhattacharyya
Publisher : Chapman & Hall/CRC Computational Intelligence and Its Applications
Release : 2021
ISBN : 9780367493370
Language : En, Es, Fr & De

GET BOOK

Book Description :

Disruptive Trends in Computer Aided Diagnosis collates novel techniques and methodologies in the domain of content based image classification and deep learning/machine learning techniques to design efficient computer aided diagnosis architecture. It is aimed to highlight new challenges and probable solutions in the domain of computer aided diagnosis to leverage balancing of sustainable ecology. The volume focuses on designing efficient algorithms for proposing CAD systems to mitigate the challenges of critical illnesses at an early stage. State-of-the-art novel methods are explored for envisaging automated diagnosis systems thereby overriding the limitations due to lack of training data, sample annotation, region of interest identification, proper segmentation and so on. The assorted techniques addresses the challenges encountered in existing systems thereby facilitating accurate patient healthcare and diagnosis. Features: An integrated interdisciplinary approach to address complex computer aided diagnosis problems and limitations. Elucidates a rich summary of the state-of-the-art tools and techniques related to automated detection and diagnosis of life threatening diseases including pandemics. Machine learning and deep learning methodologies on evolving accurate and precise early detection and medical diagnosis systems. Information presented in an accessible way for students, researchers and medical practitioners. The volume would come to the benefit of both post-graduate students and aspiring researchers in the field of medical informatics, computer science and electronics and communication engineering. In addition, the volume is also intended to serve as a guiding factor for the medical practitioners and radiologists in accurate diagnosis of diseases.