Skip to main content

Thermoelectricity And Heat Transport In Graphene And Other 2d Nanomaterials

Download Thermoelectricity And Heat Transport In Graphene And Other 2d Nanomaterials Full eBooks in PDF, EPUB, and kindle. Thermoelectricity And Heat Transport In Graphene And Other 2d Nanomaterials is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials Book
Author : Serhii Shafraniuk
Publisher : Elsevier
Release : 2017-07-15
ISBN : 0323444903
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples. Shows readers how to improve the efficiency of heat transfer in graphene and other nanomaterials with analysis of different methodologies Includes fundamental information on the thermoelectric properties of graphene and other atomic monolayers, providing a valuable reference source for materials scientists and engineers Covers the important models of thermoelectric phenomena and thermal transport in the 2D nanomaterials and nanodevices, allowing readers to gain a greater understanding of the factors behind the efficiency of heat transport in a variety of nanomaterials

2D Monoelements

2D Monoelements Book
Author : Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah M. Asiri
Publisher : John Wiley & Sons
Release : 2020-12-30
ISBN : 1119655250
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

2D Monoelements: Properties and Applications explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing. The thematic topics include investigations such as: Recent advances in phosphorene The diverse properties of two-dimensional antimonene, of graphene and its derivatives The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors) Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing Graphene-based ternary materials as a supercapacitor electrode Rise of silicene and its applications in gas sensing

Graphene Bioelectronics

Graphene Bioelectronics Book
Author : Ashutosh Tiwari
Publisher : Elsevier
Release : 2017-11-22
ISBN : 0128133503
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices

2D Nanomaterials

2D Nanomaterials Book
Author : Ram K. Gupta
Publisher : CRC Press
Release : 2022-05-27
ISBN : 1000586111
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

2D nanomaterials have emerged as promising candidates for use in energy devices owing to their superior electrochemical properties, surface area, nanodevice integration, multifunctionality, printability, and mechanical flexibility. 2D Nanomaterials: Chemistry and Properties covers basic concepts, chemistries, and properties along with theoretical considerations in designing new 2D nanomaterials, especially for energy applications. This book: Discusses the effect of doping, structural variation, phase, and exfoliation on structural and electrochemical properties of 2D nanomaterials Presents synthesis, characterization, and applications of 2D materials for green energy production and storage Explores new aspects of synthesizing 2D nanomaterials beyond traditionally layered structures Examines challenges in using 2D materials for energy applications This book is aimed at materials scientists, chemists, electrochemists, and engineers working in energy disciplines.

2D Nanomaterials for Energy and Environmental Sustainability

2D Nanomaterials for Energy and Environmental Sustainability Book
Author : Zeba Khanam,Neelam Gogoi,Divesh Narayan Srivastava
Publisher : Springer Nature
Release : 2022-02-01
ISBN : 981168538X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents cutting-edge research, recent breakthroughs, and unresolved challenges associated with 2D nanomaterials to combat energy and environmental issues. The book discusses the state-of-the-art design and innovations engaged to novel 2D nanomaterials, viz. Transition metal compounds (TMDs, TMOs, TMHs), MXenes, elemental 2D analogs (silicene, phosphorene, arsenene, etc.), Metal-organic frameworks (MOFs), etc. It presents the latest trends on top-down and bottom-up synthesis approaches and properties followed by the critical status and progress of these 2D nanomaterials in the field of energy and environment. The topics cover wide spectrum of 2D nanomaterials applications including energy storage/conversion, air/water/soil remediation, adsorption, photocatalytic degradation, desalination and membrane filtration, detection and sensing, drug delivery systems, and nano-encapsulated agro-formulations. The subsequent section includes a comprehensive account on the safety risk assessment of 2D nanomaterials towards the ecosystem and human health. This book will be beneficial for beginners, researchers, and professionals from diverse fields interested in 2D nanomaterials for energy and environmental sustainability.

Thermoelectric Transport and Energy Conversion Using Novel 2D Materials

Thermoelectric Transport and Energy Conversion Using Novel 2D Materials Book
Author : Luke J. Wirth
Publisher : Unknown
Release : 2016
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Nanomaterials hold great promise for applications in thermal management and thermoelectric power generation. Defects in these are important as they are generally inevitably introduced during fabrication or intentionally engineered to control the properties of the nanomaterials. Here, we investigate how phonon-contributed thermal conductance in narrow graphene, boron nitride (BN), and silicene nanoribbons (NRs), responds to the presence of a vacancy defect and the corresponding geometric distortion, from first principles using the non-equilibrium Green's function method. Analyses are made of the geometries, phonon conductance coefficients, and local densities of states (LDOS) of pristine and defected nanoribbons. It is found that hydrogen absences produce similar reductions in thermal conductance in planar graphene and BN NRs with greater reductions in buckled silicene NRs. Vacancies of larger atoms affect all systems similarly, causing greater reductions than hydrogen absences. Emerging flexible and stiff scattering centers, depending on bond strengths, are shown to cause thermal conductance reduction by changing nearby LDOSs in defected structures relative to pristine ones. This knowledge suggests that inferences on unknown thermal properties of novel defected materials can be made based on understanding how thermal transport behaves in their analogues and how bond characteristics differ between systems under consideration. The thermal conductance contributed by phonons is often a limiting factor to the overall suitability of a material for use in thermoelectric power generation, wherein a voltage is generated in a material by a temperature gradient. The thermoelectric figure of merit (ZT) assesses this suitability, in part based on a ratio of electrical conductance to thermal conductance. These two properties can be decoupled in low-dimensional structures like NRs, with lower thermal conductances generally found in narrower materials. Here, ZT is analyzed in graphene, BN, and silicene nanoribbons of two different widths with engineered edges that are designed to increase the ratio of edge length to NR length. This could conceivably be synthesized by either top-down or bottom-up methods. Analyses are made of how width and material change the maximum ZT attainable by controlling the chemical potential of each system, how these maximum ZTs differ in each system as a result of p- or n- type change to chemical potential, how full-width half-maximum values of ZT peaks behave, and how the different factors of ZT affect its final value in these systems. A very high ZT of 6.26 is reported near the bandgap in the narrow chevron silicene NR at room temperature, and a room temperature ZT greater than 3 is also found in the narrow BN NR, suggesting that edge-engineered NRs offer high promise for thermoelectric applications and may be suitable for emissions-free electricity generation from waste heat sources.

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion Book
Author : Cheng-Te Lin,Yan Wang,Vinodkumar Etacheri,Rajib Paul
Publisher : Elsevier
Release : 2019-07-20
ISBN : 0128140844
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts

Phonon Thermal Transport in Silicon Based Nanomaterials

Phonon Thermal Transport in Silicon Based Nanomaterials Book
Author : Hai-Peng Li,Rui-Qin Zhang
Publisher : Springer
Release : 2018-09-08
ISBN : 9811326371
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Thermal Transport in Carbon Based Nanomaterials

Thermal Transport in Carbon Based Nanomaterials Book
Author : Gang Zhang
Publisher : Elsevier
Release : 2017-06-13
ISBN : 0323473466
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials

Energy and Infrastructure Management in Post Covid 19 Era

Energy and Infrastructure Management in Post Covid 19 Era Book
Author : Lalit K. Khurana,Asit B. Acharya
Publisher : Allied Publishers
Release : 2022-08-12
ISBN : 9390951062
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Covid-19 outbreak has been the biggest health, social and economic emergency the world has ever faced since the Second World War. The pandemic has drastically changed, at least temporarily, the way society, businesses, and infrastructure systems operate. It has forced us to take a closer look at our woefully inadequate health infrastructure. It also led to the closure of educational institutions and turned formal learning into distance learning, posing a daunting challenge of demand for e-learning infrastructure. Social distancing policies (SDPs), encouraging people to stay home and limit gatherings, impacted wide range of services and industries. The telecommunications infrastructure, in particular, became a spotlight in view of its critical importance to keep businesses, governments, and societies connected and running in the period of economic and social disruption. The governments acknowledged a fact that “telecommunications, internet services, broadcasting, cable services, IT and IT-enabled services (ITeS)” are the essential services. Work from Home (WFH) seemed a positive experience, however with some adverse impact on the social, behavioural and physical factors. ICEIM 2022 is a humble contribution of SPM PDEU in terms of presenting a scholarly platform wherein abundance of ideas, answers, right questions, and complementing new learning’s are expected to emerge. The conference aims at discussing and deliberating various contemporary issues and challenge in the management of energy & infrastructure. The conference showcases seven tracks, five of which are Business & Technology, Finance, Human Resource, Marketing, and Project & Operations Management. Then in view of emerging scenario, two more tracks were added namely, Business Analytics and Data Science, Strategies & Entrepreneurship Management. We do expect to receive 80–90 research papers covering various tracks of the conference. We have so far got regular research papers, industry papers, Ph.D. research papers and students’ research articles. New research directions also constitute an agenda of a conference. This conference had three plenary sessions: a) Emerging Electrical Vehicle Ecosystem: Prospects and Impediments, b) Infrastructure Development in India: Policy Perspectives and Innovative Financing Initiatives, c) Energy Sector Management: Challenges and Strategies in Industry 4.0 era. All the plenary sessions of this conference have speakers mostly from the industry. We strongly believe that this International Conference will provide ample opportunities to all participants to disseminate new research ideas with industry professionals as well as the policy-makers. It is also believed that this International Conference will initiate new thought process towards the issues and challenges faced by the energy and infrastructure and will definitely add substantially to the existing domain of knowledge. We are pleased to present this proceeding of the International Conference to the academicians, researchers, industry practitioners and policy-makers who all have joined hands towards building the new knowledge development in the area of energy & infrastructure management.

Silicon Nanomaterials Sourcebook

Silicon Nanomaterials Sourcebook Book
Author : Klaus D. Sattler
Publisher : CRC Press
Release : 2017-07-28
ISBN : 1351649582
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Micro and Nano Thermal Transport

Micro and Nano Thermal Transport Book
Author : Lin Qiu,Yanghui Feng
Publisher : Academic Press
Release : 2022-03-01
ISBN : 012823623X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting Contains experiments and simulations throughout that help apply understanding to practice

Thermal Transport in Low Dimensions

Thermal Transport in Low Dimensions Book
Author : Stefano Lepri
Publisher : Springer
Release : 2016-04-07
ISBN : 3319292617
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.

Two dimensional Materials

Two dimensional Materials Book
Author : Pramoda Kumar Nayak
Publisher : BoD – Books on Demand
Release : 2016-08-31
ISBN : 9535125540
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Modeling Characterization and Production of Nanomaterials

Modeling  Characterization  and Production of Nanomaterials Book
Author : Vinod Tewary,Yong Zhang
Publisher : Woodhead Publishing
Release : 2022-11-20
ISBN : 0128199199
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green’s function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing

Topics In Nanoscience In 2 Parts

Topics In Nanoscience  In 2 Parts  Book
Author : Wolfram Schommers
Publisher : World Scientific
Release : 2021-12-17
ISBN : 9811256136
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Topics In Nanoscience Part I Basic Views Complex Nanosystems Typical Results And Future

Topics In Nanoscience   Part I  Basic Views  Complex Nanosystems  Typical Results And Future Book
Author : Wolfram Schommers
Publisher : World Scientific
Release : 2021-12-17
ISBN : 9811243875
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Two Dimensional Nanostructures for Biomedical Technology

Two Dimensional Nanostructures for Biomedical Technology Book
Author : Raju Khan,Shaswat Barua
Publisher : Elsevier
Release : 2019-11-05
ISBN : 0128176512
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials Includes synthetic strategies with feasibility for sustainability Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering

Electronic and Thermal Properties of Graphene

Electronic and Thermal Properties of Graphene Book
Author : Kyong Yop Rhee
Publisher : Mdpi AG
Release : 2020-07
ISBN : 9783039364008
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This Special Issue includes recent research articles and extensive reviews on graphene-based next-generation electronics, bringing together perspectives from different branches of science and engineering. The papers presented in this volume cover experimental, computational and theoretical aspects of the electrical and thermal properties of graphene and its applications in batteries, electrodes, sensors and ferromagnetism. In addition, this Special Issue covers many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization and applications of graphene-based nanocomposites.

Biomedical Applications of Graphene and 2D Nanomaterials

Biomedical Applications of Graphene and 2D Nanomaterials Book
Author : Md Nurunnabi,Jason McCarthy
Publisher : Elsevier
Release : 2019-03-31
ISBN : 0128162694
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Biomedical Applications of Graphene and 2D Nanomaterials provides a much-needed reference on the biomedical applications of 2D nanomaterials, as well as theoretical knowledge on their structure, physicochemical properties and biomedical applications. Chapters are dedicated to growth areas, such as size and shape-dependent chemical and physical properties and applications, such as in diagnostic and therapeutic products. The book also discusses the concept, development and preclinical studies of 2D nanomaterials-based biomedical tools, such as biosensors, artificial organs and photomedicine. Case studies and reports form the core of the book, making it an ideal resource on potential applications in biomedical science and engineering. This timely resource for scientists and engineers in this rapidly advancing field features contributions from over 30 leaders who address advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials, along with expert opinions on a range of 2D nanomaterials that have therapeutic and diagnostic applications. Presents advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials Provides state-of-the-art biomedical applications for 2D nanomaterials, including graphene and boron nitride Includes key information from a broad selection of subject areas for researchers in both materials, engineering and medicine