Skip to main content

Thermal Transport In Carbon Based Nanomaterials

Download Thermal Transport In Carbon Based Nanomaterials Full eBooks in PDF, EPUB, and kindle. Thermal Transport In Carbon Based Nanomaterials is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Thermal Transport in Carbon Based Nanomaterials

Thermal Transport in Carbon Based Nanomaterials Book
Author : Gang Zhang
Publisher : Elsevier
Release : 2017-06-13
ISBN : 0323473466
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials

Thermal Behaviour and Applications of Carbon Based Nanomaterials

Thermal Behaviour and Applications of Carbon Based Nanomaterials Book
Author : Dimitrios V. Papavassiliou,Hai M. Duong,Feng Gong
Publisher : Elsevier
Release : 2020-04-15
ISBN : 0128176822
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications explores heat transfer in nanocomposites, discusses techniques predicting and modeling the thermal behavior of carbon nanocomposites at different scales, and methods for engineering applications of nanofluidics and heat transfer. The chapters combine theoretical explanation, experimental methods and computational analysis to show how carbon-based nanomaterials are being used to optimise heat transfer. The applications-focused emphasis of this book makes it a valuable resource for materials scientists and engineers who want to learn more about nanoscale heat transfer. Offers an informed overview of how carbon nanomaterials are currently used for nanoscale heat transfer Discusses the major applications of carbon nanomaterials for heat transfer in a variety of industry sectors Details the major computational methods for the analysis of the thermal properties of carbon nanomaterials

Thermal Behaviour and Applications of Carbon Based Nanomaterials

Thermal Behaviour and Applications of Carbon Based Nanomaterials Book
Author : Dimitrios V. Papavassiliou,Hai M. Duong,Feng Gong
Publisher : Elsevier
Release : 2020-04-01
ISBN : 0128176830
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications explores heat transfer in nanocomposites, discusses techniques predicting and modeling the thermal behavior of carbon nanocomposites at different scales, and methods for engineering applications of nanofluidics and heat transfer. The chapters combine theoretical explanation, experimental methods and computational analysis to show how carbon-based nanomaterials are being used to optimise heat transfer. The applications-focused emphasis of this book makes it a valuable resource for materials scientists and engineers who want to learn more about nanoscale heat transfer. Offers an informed overview of how carbon nanomaterials are currently used for nanoscale heat transfer Discusses the major applications of carbon nanomaterials for heat transfer in a variety of industry sectors Details the major computational methods for the analysis of the thermal properties of carbon nanomaterials

Phonon Thermal Transport in Silicon Based Nanomaterials

Phonon Thermal Transport in Silicon Based Nanomaterials Book
Author : Hai-Peng Li,Rui-Qin Zhang
Publisher : Springer
Release : 2018-09-08
ISBN : 9811326371
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Experimental Investigations of Thermal Transport in Carbon Nanotubes Graphene and Nanoscale Point Contacts

Experimental Investigations of Thermal Transport in Carbon Nanotubes  Graphene and Nanoscale Point Contacts Book
Author : Michael Thompson Pettes
Publisher : Unknown
Release : 2011
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, [kappa], of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low [kappa] in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the [kappa] is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the [kappa] of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the [kappa] temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale point contact formed between a sharp silicon tip and a silicon substrate in an ultra high vacuum (UHV) atomic force microscope (AFM). A contact mechanics model of the interface, combined with a heat transport model considering solid-solid conduction and near-field thermal radiation leads to the conclusion that the thermal resistance of the nanoscale point contact is dominated by solid-solid conduction.

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion Book
Author : Cheng-Te Lin,Yan Wang,Vinodkumar Etacheri,Rajib Paul
Publisher : Elsevier
Release : 2019-07-20
ISBN : 0128140844
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts

High Performance Carbon Based Optoelectronic Nanodevices

High Performance Carbon Based Optoelectronic Nanodevices Book
Author : Yanjie Su
Publisher : Springer Nature
Release : 2021-09-15
ISBN : 9811654972
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book focuses on the photoelectric nanodevices based on carbon nanostructures, such as carbon nanotubes, graphene and related heterojunctions. The synthesis of carbon nanostructures and device fabrication are simply given. The interface charge transfer and the performance enhancement in the photodetectors and solar cells are comprehensively introduced. Importantly, carbon allotropes behave as high-mobility conductors or bandgap-tunable semiconductors depending on the atomic arrangements, the direct motivation is to fabricate all-carbon nanodevices using these carbon nanomaterials as building blocks. The photoelectric nanodevices based on all-carbon nanostructures have increasingly attracted attention in the future. The book offers a valuable reference guide to carbon-based photoelectric devices for researchers and graduate school students in the field. It will also benefit all researchers who investigate photoelectric nanodevices and photoelectric conversion with relevant frontier theories and concepts.

Carbon based Nanomaterials and Hybrids

Carbon based Nanomaterials and Hybrids Book
Author : Hans J. Fecht,Kai Brühne
Publisher : CRC Press
Release : 2016-04-19
ISBN : 9814411418
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In recent decades nanotechnology has developed into a highly multidisciplinary topic, drawing from a number of fields such as physics, materials science, biomedicine, and different engineering disciplines. The success of nanoscience- and nanotechnology-related research and products is connected with the technological exploitation of size effects in structures and materials and is, therefore, related to its impact on the society of the future. This most recent trend has been taken up here and represents the main focus of this book applied to carbon-based materials, including nanocrystalline diamond, aerogels, and carbon nanotubes. The book compiles and details cutting-edge research, and several applications are described within the field of energy, microelectronics, and biomedicine. Beyond that, a perspective is given including a diversity of industrial applications and market opportunities for C-based nanoscale materials and devices in the future.

Thermal Transport in Novel Three Dimensional Carbon Nanostructures

Thermal Transport in Novel Three Dimensional Carbon Nanostructures Book
Author : Jungkyu Park
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Three-dimensional (3D) nanostructures comprised of one-dimensional (1D) and/or two-dimensional (2D) nanomaterials have several advantages over their base nanomaterials. Due to their dimensionally confined structures, for example, 1D carbon nanotubes (CNTs) and 2D graphene exhibit strong direction-dependent thermal transport properties with extremely inefficient cross-plane properties. However, 3D carbon nanostructures such as pillared graphene structures (PGS) are expected to be efficient in both in-plane and cross-plane thermal transport. The aim of this thesis is providing the detailed understanding of thermal transport in 3D carbon nanostructures comprised of CNTs and graphene. Reverse non-equilibrium molecular dynamics simulations were used to show that PGS and CNT networks can have both high in-plane and high cross-plane thermal conductivities comparable to their base nanomaterials, i.e. CNTs and graphene, and also to show that their thermal properties are tunable through altering their architectures. The results indicate that thermal resistances at CNT-graphene junctions result from the combined effect of phonon scattering at the junctions with distorted carbon-carbon bonds and the change in dimensionality of the phonon transport medium as phonons propagate from CNTs (1D) to graphene (2D) and then again to CNT. Moreover, wave packet analysis on SWCNT networks revealed that SWCNT-SWCNT junctions with lager diameter transmit thermal energy more efficiently than the junctions with smaller diameter, and also revealed that SWCNT-SWCNT T-junctions are more efficient in thermal energy transmission than X-junctions.A new experimental method for thermal conductivity measurements in 2D nanosheets was developed. The new method ensures a 1D heat conduction in a 2D sample by creating a spatially uniform temperature profile on the heated side of the sample, and thus improves the accuracy of the measurement in a 2D structure. A MEMS device that can measure the thermal conductivity of a graphene layer using this method is currently being fabricated for the validation of the method.

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials Book
Author : Serhii Shafraniuk
Publisher : Elsevier
Release : 2017-07-15
ISBN : 0323444903
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples. Shows readers how to improve the efficiency of heat transfer in graphene and other nanomaterials with analysis of different methodologies Includes fundamental information on the thermoelectric properties of graphene and other atomic monolayers, providing a valuable reference source for materials scientists and engineers Covers the important models of thermoelectric phenomena and thermal transport in the 2D nanomaterials and nanodevices, allowing readers to gain a greater understanding of the factors behind the efficiency of heat transport in a variety of nanomaterials

Comprehensive Nanoscience and Nanotechnology

Comprehensive Nanoscience and Nanotechnology Book
Author : Anonim
Publisher : Academic Press
Release : 2019-01-02
ISBN : 012812296X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Comprehensive Nanoscience and Technology, Second Edition allows researchers to navigate a very diverse, interdisciplinary and rapidly-changing field with up-to-date, comprehensive and authoritative coverage of every aspect of modern nanoscience and nanotechnology. Presents new chapters on the latest developments in the field Covers topics not discussed to this degree of detail in other works, such as biological devices and applications of nanotechnology Compiled and written by top international authorities in the field

Handbook of Carbon Based Nanomaterials

Handbook of Carbon Based Nanomaterials Book
Author : Sabu Thomas,Sarathchandran C.,S.A Ilangovan,Juan Carlos Moreno-Pirajan
Publisher : Elsevier
Release : 2021-07-23
ISBN : 0128219955
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications

Graphene Nanoplatelets

Graphene Nanoplatelets Book
Author : Silvia González Prolongo,Alberto Jiménez Suárez
Publisher : MDPI
Release : 2020-04-24
ISBN : 303928794X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Graphene nanoplatelets (GNPs) have attracted considerable interest due to their exceptional mechanical, electrical, and thermal properties, among others. This book provides a deep review of some aspects related to the characterization of GNPs and their applications as nanoreinforcements for different types of matrices such as polymeric- or cement-based matrices. In this book, the reader will find how these nanoparticles could be used for several industrial applications such as energy production and storage or effective barrier coatings, providing a wide overview of future progress in this topic

Nano scale Heat Transfer in Nanostructures

Nano scale Heat Transfer in Nanostructures Book
Author : Jihong Al-Ghalith,Traian Dumitrică
Publisher : Springer
Release : 2018-03-06
ISBN : 3319738828
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Advances in Carbon Nanostructures

Advances in Carbon Nanostructures Book
Author : Adrián Silva,Sónia Carabineiro
Publisher : BoD – Books on Demand
Release : 2016-10-05
ISBN : 9535126423
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Carbon atoms have the amazing ability to bond in remarkable different manners that can assume distinct astonishing dimensional arrangements from which absolutely diverse and interesting nanostructured carbon materials are obtained. This book aims to cover the most recent advances in (i) Graphene and derivatives, including graphene-based magnetic composites, membranes, wafer devices, and nanofibers for several applications, as well as some particular properties, such as light emission from graphene; (ii) Carbon nanotubes heaters and fibers for reinforcement of cement and diamond-based thin films; and (iii) Nanofluids consisting of both graphene and carbon nanotubes, apart from reporting some important case studies dealing with carbon nanostructures and their use in sensors, coatings, or electromagnetic wave absorbers.

Thermal Energy

Thermal Energy Book
Author : Yatish T. Shah
Publisher : CRC Press
Release : 2018-01-12
ISBN : 1315305933
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Micro and Nano Thermal Transport

Micro and Nano Thermal Transport Book
Author : Lin Qiu,Yanghui Feng
Publisher : Academic Press
Release : 2022-03-01
ISBN : 012823623X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting Contains experiments and simulations throughout that help apply understanding to practice

First Principles based Molecular Modeling of Thermal Transport in Silicon based Nanomaterials

First Principles based Molecular Modeling of Thermal Transport in Silicon based Nanomaterials Book
Author : Yongjin Lee
Publisher : Unknown
Release : 2014
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In today's nanotechnology, a critical issue is to gain the ability to control the structure and function of matter with a deeper understanding of the quantitative and qualitative relationship among their synthesis conditions, structures, and properties. Experiments may provide information regarding the behavior of nanomaterials, but their interpretations are often controversial due largely to the difficulty of direct measurement. Hereupon, with the amazing advance in computer technology since the late 20th century, computational modeling in science and engineering is increasingly important particularly in the fields of nanoscience and nanotechnology while it can provide researchers with significant insights into atomic-level interactions in various materials systems and underlying fundamental theories. The ability of engineering thermal conductivity of materials on the nanoscale has become extremely important in various applications including electronics and energy storage/conversion technologies. Due to technical difficulties in experimentally measuring the thermal conductivity of disordered and complex nanostructures, there has been much interest in use of theoretical and computational methods to investigate thermal transport properties nanostructured materials. One computational method that can perform an accurate analysis for the thermal conductivity of new or complex systems is molecular dynamics (MD), due to its capability of predicting the behaviors of atoms in large systems. In this work, we have developed a comprehensive MD-based computational platform capable of predicting and explaining thermal transport in disordered and complex nanostructured materials. The unique features include construction of realistic nanostructures, determination of reliable force fields, and direct simulation of large systems, which are allowed by coupling various state-of-the-art computational methods including quantum mechanics, molecular mechanics, statistical theories, and massively parallel computing. The computational scheme was applied to describe thermal transport in various silicon and carbon-based disordered and nanostructures. First, the effects of defects including vacancy clusters, substitutional dopants, and dopant-defect complexes on the thermal conductivity of bulk crystalline silicon were investigated. Next, we analyzed the factors affecting heat transport in silicon-germanium and ternary silicon-germanium-tin alloys. Lastly, we performed the analysis of heat transport in silicon-based nanostructures such as nanowires and polycrystalline structures.

Carbon Based Smart Materials

Carbon Based Smart Materials Book
Author : Constantinos A. Charitidis,Elias P. Koumoulos,Dimitrios A. Dragatogiannis
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2020-04-20
ISBN : 3110477750
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Presents technologies and key concepts to produce suitable smart materials and intelligent structures for sensing, information and communication technology, biomedical applications (drug delivery, hyperthermia therapy), self-healing, flexible memories and construction technologies. Novel developments of environmental friendly, cost-effective and scalable production processes are discussed by experts in the field.

Thermal Transport in Low Dimensions

Thermal Transport in Low Dimensions Book
Author : Stefano Lepri
Publisher : Springer
Release : 2016-04-07
ISBN : 3319292617
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.