Skip to main content

Techniques Of Functional Analysis For Differential And Integral Equations

In Order to Read Online or Download Techniques Of Functional Analysis For Differential And Integral Equations Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations Book
Author : Paul Sacks
Publisher : Academic Press
Release : 2017-05-16
ISBN : 0128114576
Language : En, Es, Fr & De

GET BOOK

Book Description :

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Special Functions and Analysis of Differential Equations

Special Functions and Analysis of Differential Equations Book
Author : Praveen Agarwal,Ravi P Agarwal,Michael Ruzhansky
Publisher : CRC Press
Release : 2020-09-08
ISBN : 1000078566
Language : En, Es, Fr & De

GET BOOK

Book Description :

Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

Green s Functions and Boundary Value Problems

Green s Functions and Boundary Value Problems Book
Author : Ivar Stakgold,Michael J. Holst
Publisher : John Wiley & Sons
Release : 2011-03-01
ISBN : 0470906529
Language : En, Es, Fr & De

GET BOOK

Book Description :

Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.

Stationary Oscillations of Elastic Plates

Stationary Oscillations of Elastic Plates Book
Author : Gavin R. Thomson,Christian Constanda
Publisher : Springer Science & Business Media
Release : 2011-06-28
ISBN : 9780817682415
Language : En, Es, Fr & De

GET BOOK

Book Description :

Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations. Stationary Oscillations of Elastic Plates studies the latter in the context of stationary vibrations of thin elastic plates. The techniques presented here reduce the complexity of classical elasticity to a system of two independent variables, modeling problems of flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations. The book is intended for an audience with a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineers whose work involves elastic plates. Graduate students in these fields can also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations.

Functional Analysis for the Applied Sciences

Functional Analysis for the Applied Sciences Book
Author : Gheorghe Moroşanu
Publisher : Springer Nature
Release : 2019-12-27
ISBN : 3030271536
Language : En, Es, Fr & De

GET BOOK

Book Description :

This advanced graduate textbook presents main results and techniques in Functional Analysis and uses them to explore other areas of mathematics and applications. Special attention is paid to creating appropriate frameworks towards solving significant problems involving differential and integral equations. Exercises at the end of each chapter help the reader to understand the richness of ideas and methods offered by Functional Analysis. Some of the exercises supplement theoretical material, while others relate to the real world. This textbook, with its friendly exposition, focuses on different problems in physics and other applied sciences and uniquely provides solutions to most of the exercises. The text is aimed toward graduate students and researchers in applied mathematics, physics, and neighboring fields of science.

Advanced Numerical Methods for Differential Equations

Advanced Numerical Methods for Differential Equations Book
Author : Harendra Singh,Jagdev Singh,Sunil Dutt Purohit,Devendra Kumar
Publisher : Unknown
Release : 2021
ISBN : 9780367473112
Language : En, Es, Fr & De

GET BOOK

Book Description :

Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.

Linear Integral Equations

Linear Integral Equations Book
Author : Ram P. Kanwal
Publisher : Springer Science & Business Media
Release : 2012-11-07
ISBN : 1461460123
Language : En, Es, Fr & De

GET BOOK

Book Description :

Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. Such problems abound in applied mathematics, theoretical mechanics, and mathematical physics. This uncorrected soft cover reprint of the second edition places the emphasis on applications and presents a variety of techniques with extensive examples.Originally published in 1971, Linear Integral Equations is ideal as a text for a beginning graduate level course. Its treatment of boundary value problems also makes the book useful to researchers in many applied fields.

Integration for Calculus Analysis and Differential Equations

Integration for Calculus  Analysis  and Differential Equations Book
Author : Markin Marat V
Publisher : World Scientific
Release : 2012-03-09
ISBN : 9813272058
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book assists Calculus students to gain a better understanding and command of integration and its applications. It reaches to students in more advanced courses such as Multivariable Calculus, Differential Equations, and Analysis, where the ability to effectively integrate is essential for their success. Keeping the reader constantly focused on the three principal epistemological questions: 'What for?', 'Why?', and 'How?', the book is designated as a supplementary instructional tool and consists of The Answers to all the 192 Problems are provided in the Answer Key. The book will benefit undergraduates, advanced undergraduates, and members of the public with an interest in science and technology, helping them to master techniques of integration at the level expected in a calculus course.

Elliptic Differential Equations

Elliptic Differential Equations Book
Author : Wolfgang Hackbusch
Publisher : Springer
Release : 2017-06-01
ISBN : 3662549611
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

Analysis of Approximation Methods for Differential and Integral Equations

Analysis of Approximation Methods for Differential and Integral Equations Book
Author : Hans-Jürgen Reinhardt
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 1461210801
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Computational Functional Analysis

Computational Functional Analysis Book
Author : Ramon E Moore,Michael J Cloud
Publisher : Elsevier
Release : 2007-06-01
ISBN : 0857099434
Language : En, Es, Fr & De

GET BOOK

Book Description :

This course text fills a gap for first-year graduate-level students reading applied functional analysis or advanced engineering analysis and modern control theory. Containing 100 problem-exercises, answers, and tutorial hints, the first edition is often cited as a standard reference. Making a unique contribution to numerical analysis for operator equations, it introduces interval analysis into the mainstream of computational functional analysis, and discusses the elegant techniques for reproducing Kernel Hilbert spaces. There is discussion of a successful ‘‘hybrid’’ method for difficult real-life problems, with a balance between coverage of linear and non-linear operator equations. The authors successful teaching philosophy: ‘‘We learn by doing’’ is reflected throughout the book. Contains 100 problem-exercises, answers and tutorial hints for students reading applied functional analysis Introduces interval analysis into the mainstream of computational functional analysis

Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations Book
Author : R Precup
Publisher : Springer Science & Business Media
Release : 2013-03-09
ISBN : 9401599866
Language : En, Es, Fr & De

GET BOOK

Book Description :

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.

Applications of Functional Analysis and Operator Theory

Applications of Functional Analysis and Operator Theory Book
Author : V. Hutson,J. Pym,M. Cloud
Publisher : Elsevier
Release : 2005-02-08
ISBN : 9780080527314
Language : En, Es, Fr & De

GET BOOK

Book Description :

Functional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results Introduces each new topic with a clear, concise explanation Includes numerous examples linking fundamental principles with applications Solidifies the reader's understanding with numerous end-of-chapter problems

Functional Analysis

Functional Analysis Book
Author : L. V. Kantorovich,G. P. Akilov
Publisher : Elsevier
Release : 2014-05-18
ISBN : 1483147746
Language : En, Es, Fr & De

GET BOOK

Book Description :

Functional Analysis examines trends in functional analysis as a mathematical discipline and the ever-increasing role played by its techniques in applications. The theory of topological vector spaces is emphasized, along with the applications of functional analysis to applied analysis. Some topics of functional analysis connected with applications to mathematical economics and control theory are also discussed. Comprised of 18 chapters, this book begins with an introduction to the elements of the theory of topological spaces, the theory of metric spaces, and the theory of abstract measure spaces. Many results are stated without proofs. The discussion then turns to vector spaces, normed spaces, and linear operators and functionals. Subsequent chapters deal with the analytic representation of functionals; sequences of linear operators; the weak topology in a Banach space; and compact and adjoint operators. The last section focuses on functional equations, including the adjoint equation and functional equations of the second kind. This monograph is intended for students specializing in mathematical analysis and computational mathematics.

Applications of Nonlinear Analysis

Applications of Nonlinear Analysis Book
Author : Themistocles M. Rassias
Publisher : Springer
Release : 2018-06-29
ISBN : 3319898159
Language : En, Es, Fr & De

GET BOOK

Book Description :

New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.

Polynomial Operator Equations in Abstract Spaces and Applications

Polynomial Operator Equations in Abstract Spaces and Applications Book
Author : Ioannis K. Argyros
Publisher : CRC Press
Release : 2020-10-07
ISBN : 1000099431
Language : En, Es, Fr & De

GET BOOK

Book Description :

Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation

Theoretical Numerical Analysis

Theoretical Numerical Analysis Book
Author : Kendall Atkinson,Weimin Han
Publisher : Springer Science & Business Media
Release : 2007-06-07
ISBN : 0387287698
Language : En, Es, Fr & De

GET BOOK

Book Description :

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scienti?c disciplines and a resurgence of interest in the modern as well as the cl- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). Thedevelopmentofnewcoursesisanaturalconsequenceofahighlevelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Ma- ematical Sciences (AMS) series, which will focus on advanced textbooks and research-level monographs.

Computational Mathematics and Variational Analysis

Computational Mathematics and Variational Analysis Book
Author : Nicholas J. Daras,Themistocles M. Rassias
Publisher : Springer Nature
Release : 2020-06-06
ISBN : 3030446255
Language : En, Es, Fr & De

GET BOOK

Book Description :

This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Ordinary Differential Equations and Integral Equations

Ordinary Differential Equations and Integral Equations Book
Author : C.T.H. Baker,G. Monegato,G. vanden Berghe
Publisher : Gulf Professional Publishing
Release : 2001-07-04
ISBN : 9780444506009
Language : En, Es, Fr & De

GET BOOK

Book Description :

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular,

Computational Methods for Integral Equations

Computational Methods for Integral Equations Book
Author : L. M. Delves,J. L. Mohamed
Publisher : CUP Archive
Release : 1988-03-31
ISBN : 9780521357968
Language : En, Es, Fr & De

GET BOOK

Book Description :

This textbook provides a readable account of techniques for numerical solutions.