Skip to main content

Structured Search For Big Data

In Order to Read Online or Download Structured Search For Big Data Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Structured Search for Big Data

Structured Search for Big Data Book
Author : Mikhail Gilula
Publisher : Morgan Kaufmann
Release : 2015-08-28
ISBN : 9780128046319
Language : En, Es, Fr & De

GET BOOK

Book Description :

The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration. Conceptualizes structured search as a technology for querying multiple data sources in an independent and scalable manner. Explains how NoSQL and KeySQL complement each other and serve different needs with respect to big data Shows the place of structured search in the internet evolution and describes its implementations including the real-time structured internet search

Structured Search for Big Data

Structured Search for Big Data Book
Author : Mikhail Gilula
Publisher : Morgan Kaufmann
Release : 2015-08-26
ISBN : 012804652X
Language : En, Es, Fr & De

GET BOOK

Book Description :

The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration. Conceptualizes structured search as a technology for querying multiple data sources in an independent and scalable manner. Explains how NoSQL and KeySQL complement each other and serve different needs with respect to big data Shows the place of structured search in the internet evolution and describes its implementations including the real-time structured internet search

Semantic Keyword Based Search on Structured Data Sources

Semantic Keyword Based Search on Structured Data Sources Book
Author : Andrea Calì,Dorian Gorgan,Martín Ugarte
Publisher : Springer
Release : 2017-02-13
ISBN : 3319536400
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the thoroughly refereed post-conference proceedings of the Second COST Action IC1302 International KEYSTONE Conference on Semantic Keyword-Based Search on Structured Data Sources, IKC 2016, held in Cluj-Napoca, Romania, in September 2016. The 15 revised full papers and 2 invited papers are reviewed and selected from 18 initial submissions and cover the areas of keyword extraction, natural language searches, graph databases, information retrieval techniques for keyword search and document retrieval.

Structured Search for Big Data From Keywords to Key objects

Structured Search for Big Data  From Keywords to Key objects Book
Author : Anonim
Publisher : Unknown
Release : 2021-09-26
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Structured Search for Big Data From Keywords to Key objects book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Semantic Keyword based Search on Structured Data Sources

Semantic Keyword based Search on Structured Data Sources Book
Author : Jorge Cardoso,Francesco Guerra,Geert-Jan Houben,Alexandre Miguel Pinto,Yannis Velegrakis
Publisher : Springer
Release : 2016-01-06
ISBN : 3319279327
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the thoroughly refereed post-conference proceedings of the First COST Action IC1302 International KEYSTONE Conference on semantic Keyword-based Search on Structured Data Sources, IKC 2015, held in Coimbra, Portugal, in September 2015. The 13 revised full papers, 3 revised short papers, and 2 invited papers were carefully reviewed and selected from 22 initial submissions. The paper topics cover techniques for keyword search, semantic data management, social Web and social media, information retrieval, benchmarking for search on big data.

Big Data Investments Effects of Internet Search Queries on German Stocks

Big Data Investments  Effects of Internet Search Queries on German Stocks Book
Author : Jan Becker
Publisher : Diplomica Verlag
Release : 2015-08
ISBN : 3959345976
Language : En, Es, Fr & De

GET BOOK

Book Description :

In recent years, the internet has developed very quickly and became a major source of information all over the planet. Many scientists have used search engine query data to forecast econometric time series like consumer confidence indicators, unemployment rates, retail sales, house price indices, stock prices, volatility of stocks and even commodity prices. Following the prior research this study analyzes the impact of internet search engine data on capital markets. Many authors already have contributed to index level data and most of them on the US market. This study adds to the existing literature on the German stock market. Two research questions are answered: First, whether an increase in search queries drives individual stock returns and second, whether queries affect the implied volatility of stock options. After controlling for seasonality, autocorrelation and general market risk, in the further analysis also the Price-to-Book valuation, one year performance and historical volatility are examined in interaction with internet search queries.

Engineering the Web in the Big Data Era

Engineering the Web in the Big Data Era Book
Author : Philipp Cimiano,Flavius Frasincar,Geert-Jan Houben,Daniel Schwabe
Publisher : Springer
Release : 2015-06-09
ISBN : 3319198904
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the refereed proceedings of the 15th International Conference on Web Engineering, ICWE 2015, held in Rotterdam, The Netherlands, in June 2015. The 26 full research papers, 11 short papers, 7 industry papers, 11 demonstrations, 6 posters and 4 contributions to the PhD symposium presented were carefully reviewed and selected from 100 submissions. Moreover 2 tutorials are presented. The papers focus on eight tracks, namely Web application modeling and engineering; mobile Web applications; social Web applications; semantic Web applications; quality and accessibility aspects of Web applications; Web applications composition and mashups; Web user interfaces; security and privacy in Web applications.

Cognitive Computing for Big Data Systems Over IoT

Cognitive Computing for Big Data Systems Over IoT Book
Author : Arun Kumar Sangaiah,Arunkumar Thangavelu,Venkatesan Meenakshi Sundaram
Publisher : Springer
Release : 2017-12-30
ISBN : 3319706888
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, extending current data science approaches by incorporating insights from experts as well as a notion of artificial intelligence, and performing inferences on the knowledge The book provides a comprehensive overview of the constituent paradigms underlying cognitive computing methods, which illustrate the increased focus on big data in IoT problems as they evolve. It includes novel, in-depth fundamental research contributions from a methodological/application in data science accomplishing sustainable solution for the future perspective. Mainly focusing on the design of the best cognitive embedded data science technologies to process and analyze the large amount of data collected through the IoT, and aid better decision making, the book discusses adapting decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures as well as big data and IoT problems can be handled in practice. This book is a valuable resource for scientists, professionals, researchers, and academicians dealing with the new challenges and advances in the specific areas of cognitive computing and data science approaches.

Challenges and Opportunities for the Convergence of IoT Big Data and Cloud Computing

Challenges and Opportunities for the Convergence of IoT  Big Data  and Cloud Computing Book
Author : Velayutham, Sathiyamoorthi
Publisher : IGI Global
Release : 2021-01-29
ISBN : 1799831132
Language : En, Es, Fr & De

GET BOOK

Book Description :

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

Social Networks and Questions of Big Data Graph search for communities with corresponding keywords

Social Networks and Questions of Big Data  Graph search for communities with corresponding keywords Book
Author : Andrea Attwenger
Publisher : GRIN Verlag
Release : 2017-06-27
ISBN : 3668471754
Language : En, Es, Fr & De

GET BOOK

Book Description :

Seminar paper from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 1.3, LMU Munich (Institut für Informatik), course: Recent Developments in Data Science, language: English, abstract: This essay deals with a graph search for communities with corresponding keywords. The era of big data and world-spanning social networks has highlighted the necessity of ways to make sense of this vast amount of information. Data can be arranged in a graph of connected vertices, therefore giving it a basic structure. If the vertices are further described by keywords, the structure is called an attributed graph. This paper discusses a query algorithm that scans these attributed graphs for communities that are not only structurally linked - therefore forming subgraphs - but also share the same keywords. This method might give new insights into the composition of large networks, highlight interesting connections and give opportunities for effectively targeted marketing. As a specific use case, the idea of the attributed community query is applied to the example of a film recommendation program.

Big Data Management Technologies and Applications

Big Data Management  Technologies  and Applications Book
Author : Hu, Wen-Chen
Publisher : IGI Global
Release : 2013-10-31
ISBN : 1466647000
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book discusses the exponential growth of information size and the innovative methods for data capture, storage, sharing, and analysis for big data"--Provided by publisher.

Big Data Concepts Methodologies Tools and Applications

Big Data  Concepts  Methodologies  Tools  and Applications Book
Author : Management Association, Information Resources
Publisher : IGI Global
Release : 2016-04-20
ISBN : 1466698411
Language : En, Es, Fr & De

GET BOOK

Book Description :

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.

Distributed Computing in Big Data Analytics

Distributed Computing in Big Data Analytics Book
Author : Sourav Mazumder,Robin Singh Bhadoria,Ganesh Chandra Deka
Publisher : Springer
Release : 2017-08-29
ISBN : 3319598341
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies.

Handbook of Big Data Technologies

Handbook of Big Data Technologies Book
Author : Albert Y. Zomaya,Sherif Sakr
Publisher : Springer
Release : 2017-02-25
ISBN : 331949340X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.

Big Data Analytics for Large Scale Multimedia Search

Big Data Analytics for Large Scale Multimedia Search Book
Author : Stefanos Vrochidis,Benoit Huet,Edward Y. Chang,Ioannis Kompatsiaris
Publisher : John Wiley & Sons
Release : 2019-03-18
ISBN : 1119377005
Language : En, Es, Fr & De

GET BOOK

Book Description :

A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.

Big Data Management and Processing

Big Data Management and Processing Book
Author : Kuan-Ching Li,Hai Jiang,Albert Y. Zomaya
Publisher : CRC Press
Release : 2017-05-19
ISBN : 1498768083
Language : En, Es, Fr & De

GET BOOK

Book Description :

From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.

Signal Processing and Machine Learning for Biomedical Big Data

Signal Processing and Machine Learning for Biomedical Big Data Book
Author : Ervin Sejdic,Tiago H. Falk
Publisher : CRC Press
Release : 2018-07-04
ISBN : 149877346X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.

Big Data Analytics Methods

Big Data Analytics Methods Book
Author : Peter Ghavami
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2019-12-16
ISBN : 1547401583
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.

Big Data Concepts Theories and Applications

Big Data Concepts  Theories  and Applications Book
Author : Shui Yu,Song Guo
Publisher : Springer
Release : 2016-03-03
ISBN : 3319277634
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.

Big Data of Complex Networks

Big Data of Complex Networks Book
Author : Matthias Dehmer,Frank Emmert-Streib,Stefan Pickl,Andreas Holzinger
Publisher : CRC Press
Release : 2016-08-19
ISBN : 1498723624
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.