Skip to main content

Social Network Analytics

In Order to Read Online or Download Social Network Analytics Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Social Network Analytics

Social Network Analytics Book
Author : Nilanjan Dey,Samarjeet Borah,Rosalina Babo,Amira S. Ashour
Publisher : Academic Press
Release : 2018-11-16
ISBN : 0128156414
Language : En, Es, Fr & De

GET BOOK

Book Description :

Social Network Analytics: Computational Research Methods and Techniques focuses on various technical concepts and aspects of social network analysis. The book features the latest developments and findings in this emerging area of research. In addition, it includes a variety of applications from several domains, such as scientific research, and the business and industrial sectors. The technical aspects of analysis are covered in detail, including visualizing and modeling, network theory, mathematical models, the big data analytics of social networks, multidimensional scaling, and more. As analyzing social network data is rapidly gaining interest in the scientific research community because of the importance of the information and insights that can be culled from the wealth of data inherent in the various aspects of the network, this book provides insights on measuring the relationships and flows between people, groups, organizations, computers, URLs, and more. Examines a variety of data analytic techniques that can be applied to social networks Discusses various methods of visualizing, modeling and tracking network patterns, organization, growth and change Covers the most recent research on social network analysis and includes applications to a number of domains

Exam Prep for Social Network Analytics

Exam Prep for  Social Network Analytics Book
Author : Anonim
Publisher : Unknown
Release : 2021-05-17
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Exam Prep for Social Network Analytics book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Social Network Data Analytics

Social Network Data Analytics Book
Author : Charu C. Aggarwal
Publisher : Springer Science & Business Media
Release : 2011-03-18
ISBN : 1441984623
Language : En, Es, Fr & De

GET BOOK

Book Description :

Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Learning Social Media Analytics with R

Learning Social Media Analytics with R Book
Author : Raghav Bali,Dipanjan Sarkar,Tushar Sharma
Publisher : Packt Publishing Ltd
Release : 2017-05-26
ISBN : 1787125467
Language : En, Es, Fr & De

GET BOOK

Book Description :

Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.

Models and Methods in Social Network Analysis

Models and Methods in Social Network Analysis Book
Author : Peter J. Carrington,John Scott,Stanley Wasserman
Publisher : Cambridge University Press
Release : 2005-02-07
ISBN : 9781139443432
Language : En, Es, Fr & De

GET BOOK

Book Description :

Models and Methods in Social Network Analysis, first published in 2005, presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.

Social Network Analytics for Contemporary Business Organizations

Social Network Analytics for Contemporary Business Organizations Book
Author : Bansal, Himani,Shrivastava, Gulshan,Nguyen, Gia Nhu,Stanciu, Loredana-Mihaela
Publisher : IGI Global
Release : 2018-03-23
ISBN : 1522550984
Language : En, Es, Fr & De

GET BOOK

Book Description :

Social technology is quickly becoming a vital tool in our personal, educational, and professional lives. Its use must be further examined in order to determine the role of social media technology in organizational settings to promote business development and growth. Social Network Analytics for Contemporary Business Organizations is a critical scholarly resource that analyzes the application of social media in business applications. Featuring coverage on a broad range of topics, such as business management, dynamic networks, and online interaction, this book is geared towards professionals, researchers, academics, students, managers, and practitioners actively involved in the business industry.

Python Social Media Analytics

Python Social Media Analytics Book
Author : Siddhartha Chatterjee,Michal Krystyanczuk
Publisher : Packt Publishing Ltd
Release : 2017-07-28
ISBN : 1787126757
Language : En, Es, Fr & De

GET BOOK

Book Description :

Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.

Big Data Analytics

Big Data Analytics Book
Author : Mrutyunjaya Panda,Ajith Abraham,Aboul Ella Hassanien
Publisher : CRC Press
Release : 2018-12-12
ISBN : 1351622595
Language : En, Es, Fr & De

GET BOOK

Book Description :

Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.

Social Network Analysis

Social Network Analysis Book
Author : Stanley Wasserman,Stanley (University of Illinois Wasserman, Urbana-Champaign),Katherine Faust
Publisher : Cambridge University Press
Release : 1994-11-25
ISBN : 9780521387071
Language : En, Es, Fr & De

GET BOOK

Book Description :

Social network analysis is used widely in the social and behavioral sciences, as well as in economics, marketing, and industrial engineering. The social network perspective focuses on relationships among social entities and is an important addition to standard social and behavioral research, which is primarily concerned with attributes of the social units. Social Network Analysis: Methods and Applications reviews and discusses methods for the analysis of social networks with a focus on applications of these methods to many substantive examples. It is a reference book that can be used by those who want a comprehensive review of network methods, or by researchers who have gathered network data and want to find the most appropriate method by which to analyze it. It is also intended for use as a textbook as it is the first book to provide comprehensive coverage of the methodology and applications of the field.

The SAGE Handbook of Social Network Analysis

The SAGE Handbook of Social Network Analysis Book
Author : John Scott,Peter J. Carrington
Publisher : SAGE
Release : 2011-05-18
ISBN : 1446250113
Language : En, Es, Fr & De

GET BOOK

Book Description :

This sparkling Handbook offers an unrivalled resource for those engaged in the cutting edge field of social network analysis. Systematically, it introduces readers to the key concepts, substantive topics, central methods and prime debates. Among the specific areas covered are: Network theory Interdisciplinary applications Online networks Corporate networks Lobbying networks Deviant networks Measuring devices Key Methodologies Software applications. The result is a peerless resource for teachers and students which offers a critical survey of the origins, basic issues and major debates. The Handbook provides a one-stop guide that will be used by readers for decades to come.

Fraud Analytics Using Descriptive Predictive and Social Network Techniques

Fraud Analytics Using Descriptive  Predictive  and Social Network Techniques Book
Author : Bart Baesens,Wouter Verbeke,Veronique Van Vlasselaer
Publisher : John Wiley & Sons
Release : 2015-08-17
ISBN : 1119133122
Language : En, Es, Fr & De

GET BOOK

Book Description :

Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post–implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti–money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Seven Layers of Social Media Analytics

Seven Layers of Social Media Analytics Book
Author : Gohar F. Khan
Publisher : Createspace Independent Publishing Platform
Release : 2015
ISBN : 9781507823200
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book offers concepts, tools, tutorials, and case studies that business managers need to extract and analyze the seven layers of social media data, including text, actions, networks, apps, hyperlinks, search engines, and location layers. Social media analytics is about converting unstructured social media data into meaningful business insights. By the end of this book, you will have mastered the concepts, techniques, and tools used to extract business insights from social media that help increase brand loyalty, generate leads, drive traffic, and ultimately make good business decisions. The book is non-technical in nature best suited for business managers, owners, consultants, students, and professors, etc. Here is how the book is structured: Chapter 1: The Seven Layers of Social Media Analytics Chapter 2: Understanding Social Media Chapter 3: Social Media Text Analytics Chapter 4: Social Media Network Analytics Chapter 5: Social Media Actions Analytics Chapter 6: Social Media Apps Analytics Chapter 7: Social Media Hyperlinks Analytics Chapter 8: Social Media Location Analytics Chapter 9: Social Media Search Engine Analytics Chapter 10: Aligning Social Media Analytics with Business Goals The book also comes with a companion site (http: //7layersanalytics.com/) which offers Updated Tutorials, Power-Point Slide, Case Studies, Sample Data, and Syllabus.

Sentiment Analysis in Social Networks

Sentiment Analysis in Social Networks Book
Author : Federico Alberto Pozzi,Elisabetta Fersini,Enza Messina,Bing Liu
Publisher : Morgan Kaufmann
Release : 2016-10-06
ISBN : 0128044381
Language : En, Es, Fr & De

GET BOOK

Book Description :

The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network analysis Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network mining Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics

Trends in Social Network Analysis

Trends in Social Network Analysis Book
Author : Rokia Missaoui,Talel Abdessalem,Matthieu Latapy
Publisher : Springer
Release : 2017-04-29
ISBN : 3319534203
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book collects contributions from experts worldwide addressing recent scholarship in social network analysis such as influence spread, link prediction, dynamic network biclustering, and delurking. It covers both new topics and new solutions to known problems. The contributions rely on established methods and techniques in graph theory, machine learning, stochastic modelling, user behavior analysis and natural language processing, just to name a few. This text provides an understanding of using such methods and techniques in order to manage practical problems and situations. Trends in Social Network Analysis: Information Propagation, User Behavior Modelling, Forecasting, and Vulnerability Assessment appeals to students, researchers, and professionals working in the field.

Social Network Analysis

Social Network Analysis Book
Author : David Knoke,Song Yang
Publisher : SAGE Publications
Release : 2019-12-02
ISBN : 1506389309
Language : En, Es, Fr & De

GET BOOK

Book Description :

David Knoke and Song Yang's Social Network Analysis, Third Edition provides a concise introduction to the concepts and tools of social network analysis. The authors convey key material while at the same time minimizing technical complexities. The examples are simple: sets of 5 or 6 entities such as individuals, positions in a hierarchy, political offices, and nation-states, and the relations between them include friendship, communication, supervision, donations, and trade. The new edition reflects developments and changes in practice over the past decade. The authors also describe important recent developments in network analysis, especially in the fifth chapter. Exponential random graph models (ERGMs) are a prime example: when the second edition was published, P* models were the recommended approach for this, but they have been replaced by ERGMs. Finally, throughout the volume, the authors comment on the challenges and opportunities offered by internet and social media data.

Research Methods in Social Network Analysis

Research Methods in Social Network Analysis Book
Author : Linton C. Freeman,Douglas R. White,Antone Kimball Romney
Publisher : Transaction Publishers
Release : 2021-05-17
ISBN : 9781412833141
Language : En, Es, Fr & De

GET BOOK

Book Description :

Since the publication of Herbert Spencer's Principles of Sociology in 1875, the use of social structure as a defining concept has produced a large body of creative speculations, insights, and intuitions about social life. However, writers in this tradition do not always provide the sorts of formal definitons and propositions that are the building blocks of modern social research. In its broad-ranging examination of the kind of data that form the basis for the systematic study of social structure, Research Methods in Social Network Analysis marks a significant methodological advance in network studies. As used in this volume, social structure refers to a bundle of intuitive natural language ideas and concepts about patterning in social relationships among people. In contrast, social networks is used to refer to a collection of precise analytic and methodological concepts and procedures that facilitate the collection of data and the systematic study of such patterning. Accordingly, the book's five sections are arranged to address analytical problems in a series of logically ordered stages or processes. The major contributors define the fundamental modes by which social structural phenomena are to be represented; how boundaries to a social structure are set; how the relations of a network are measured in terms of structure and content; the ways in which the relational structure of a network affects system actors; and how actors within a social network are clustered into cliques or groups. The chapters in the last section build on solutions to problems proposed in the previous sections. This highly unified approach to research design combined with a representative diversity of viewpoints makes Research Methods in Social Network Analysis a state-of-the-art volume.

Introduction to Social Network Analysis with R

Introduction to Social Network Analysis with R Book
Author : Michal Bojanowski
Publisher : John Wiley & Sons
Release : 2016-02-26
ISBN : 9781118456040
Language : En, Es, Fr & De

GET BOOK

Book Description :

Introduction to Social Network Analysis with R provides an introduction to performing SNA studies using R, combining the theories of social networks and methods of social network analysis with the R environment as an open source system for statistical data analysis and graphics. Short introductions to both R and the topics of SNA are included, making the book accessible to those with little or no familiarity with either domain. The topics covered and the structure of the book mimic the stages of a typical SNA research project, and include chapters devoted to data importing, network data manipulation and selection, network visualisation and methods of de­scriptive SNA. Concepts of SNA are introduced and their application demonstrated with an extensive use of empirical examples which are based on a variety of real network datasets. Introduction to Social Network Analysis with R also provides background and theoretical motivations, which include examples of important theoretical models behind the presented methods. These numerous examples and case studies reveal how R can be used as a convenient simulation platform, and are accompanied by a supporting website featuring R functions and datasets used throughout the book.

Open Source Intelligence and Cyber Crime

Open Source Intelligence and Cyber Crime Book
Author : Mohammad A. Tayebi,Uwe Glässer,David B. Skillicorn
Publisher : Springer Nature
Release : 2020-09-01
ISBN : 3030412512
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book shows how open source intelligence can be a powerful tool for combating crime by linking local and global patterns to help understand how criminal activities are connected. Readers will encounter the latest advances in cutting-edge data mining, machine learning and predictive analytics combined with natural language processing and social network analysis to detect, disrupt, and neutralize cyber and physical threats. Chapters contain state-of-the-art social media analytics and open source intelligence research trends. This multidisciplinary volume will appeal to students, researchers, and professionals working in the fields of open source intelligence, cyber crime and social network analytics. Chapter Automated Text Analysis for Intelligence Purposes: A Psychological Operations Case Study is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Applied Social Network Analysis With R Emerging Research and Opportunities

Applied Social Network Analysis With R  Emerging Research and Opportunities Book
Author : Gençer, Mehmet
Publisher : IGI Global
Release : 2020-02-07
ISBN : 1799819140
Language : En, Es, Fr & De

GET BOOK

Book Description :

Understanding the social relations within the fields of business and economics is vital for the promotion of success within a certain organization. Analytics and statistics have taken a prominent role in marketing and management practices as professionals are constantly searching for a competitive advantage. Converging these technological tools with traditional methods of business relations is a trending area of research. Applied Social Network Analysis With R: Emerging Research and Opportunities is an essential reference source that materializes and analyzes the issue of structure in terms of its effects on human societies and the state of the individuals in these communities. Even though the theme of the book is business-oriented, an approach underlining and strengthening the ties of this field of study with social sciences for further development is adopted throughout. Therefore, the knowledge presented is valid for analyzing not only the organization of the business world but also for the organization of any given community. Featuring research on topics such as network visualization, graph theory, and micro-dynamics, this book is ideally designed for researchers, practitioners, business professionals, managers, programmers, academicians, and students seeking coverage on analyzing social and business networks using modern methods of statistics, programming, and data sets.

Creating Value with Social Media Analytics

Creating Value with Social Media Analytics Book
Author : Gohar F. Khan
Publisher : Createspace Independent Publishing Platform
Release : 2018-04-23
ISBN : 9781977543974
Language : En, Es, Fr & De

GET BOOK

Book Description :

Often termed as the ''new gold,'' the vast amount of social media data can be employed to identify which customer behavior and actions create more value. Nevertheless, many brands find it extremely hard to define what the value of social media is and how to capture and create value with social media data.In Creating Value with Social Media Analytics, we draw on developments in social media analytics theories and tools to develop a comprehensive social media value creation framework that allows readers to define, align, capture, and sustain value through social media data. The book offers concepts, strategies, tools, tutorials, and case studies that brands need to align, extract, and analyze a variety of social media data, including text, actions, networks, multimedia, apps, hyperlinks, search engines, and location data. By the end of this book, the readers will have mastered the theories, concepts, strategies, techniques, and tools necessary to extract business value from big social media that help increase brand loyalty, generate leads, drive traffic, and ultimately make sound business decisions. Here is how the book is organized. Chapter 1: Creating Value with Social Media Analytics Chapter 2: Understanding Social Media Chapter 3: Understanding Social Media Analytics Chapter 4: Analytics-Business Alignment Chapter 5: Capturing Value with Network Analytics Chapter 6: Capturing Value with Text Analytics Chapter 7: Capturing Value with Actions Analytics Chapter 8: Capturing Value with Search Engine Analytics Chapter 9: Capturing Value with Location Analytics Chapter 10: Capturing Value with Hyperlinks Analytics Chapter 11: Capturing Value with Mobile Analytics Chapter 12: Capturing Value with Multimedia Analytics Chapter 13: Social Media Analytics CapabilitiesChapter 14: Social Media Security, Privacy, & Ethics The book has a companion site (https://analytics-book.com/), which offers useful instructor resources. Praises for the book "Gohar F. Khan has a flair for simplifying the complexity of social media analytics. Creating Value with Social Media Analytics is a beautifully delineated roadmap to creating and capturing business value through social media. It provides the theories, tools, and creates a roadmap to leveraging social media data for business intelligence purposes. Real world analytics cases and tutorials combined with a comprehensive companion site make this an excellent textbook for both graduate and undergraduate students."-Robin Saunders, Director of the Communications and Information Management Graduate Programs, Bay Path University. "Creating Value with Social Media Analytics offers a comprehensive framework to define, align, capture, and sustain business value through social media data. The book is theoretically grounded and practical, making it an excellent resource for social media analytics courses."-Haya Ajjan, Director & Associate Prof., Elon Center for Organizational Analytics, Elon University. "Gohar Khan is a pioneer in the emerging domain of social media analytics. This latest text is a must-read for business leaders, managers, and academicians, as it provides a clear and concise understanding of business value creation with social media data from a social lens."-Laeeq Khan, Director, Social Media Analytics Research Team, Ohio University. "Whether you are coming from a business, research, science or art background, Creating Value with Social Media Analytics is a brilliant induction resource for those entering the social media analytics industry. The insightful case studies and carefully crafted tutorials are the perfect supplements to help digest the key concepts introduced in each chapter."-Jared Wong, Social Media Data Analyst, Digivizer "It is one of the most comprehensive books on analytics that I have come across recently."-Bobby Swar, Prof. Concordia Uni.