Skip to main content

Reliability Analysis Of Dynamic Systems

In Order to Read Online or Download Reliability Analysis Of Dynamic Systems Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Efficient Methods for the Reliability Analysis of Dynamic Systems

Efficient Methods for the Reliability Analysis of Dynamic Systems Book
Author : Bin Wu
Publisher : Unknown
Release : 2007
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Efficient Methods for the Reliability Analysis of Dynamic Systems book written by Bin Wu, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Dynamic System Reliability

Dynamic System Reliability Book
Author : Liudong Xing,Gregory Levitin,Chaonan Wang
Publisher : Wiley
Release : 2019-03-11
ISBN : 1119507634
Language : En, Es, Fr & De

GET BOOK

Book Description :

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Reliability Analysis of Dynamic Systems

Reliability Analysis of Dynamic Systems Book
Author : Bin Wu
Publisher : Academic Press
Release : 2013-06-19
ISBN : 0124077390
Language : En, Es, Fr & De

GET BOOK

Book Description :

Featuring aerospace examples and applications, Reliability Analysis of Dynamic Systems presents the very latest probabilistic techniques for accurate and efficient dynamic system reliability analysis. While other books cover more broadly the reliability techniques and challenges related to large systems, Dr Bin Wu presents a focused discussion of new methods particularly relevant to the reliability analysis of large aerospace systems under harmonic loads in the low frequency range. Developed and written to help you respond to challenges such as non-linearity of the failure surface, intensive computational costs and complexity in your dynamic system, Reliability Analysis of Dynamic Systems is a specific, detailed and application-focused reference for engineers, researchers and graduate students looking for the latest modeling solutions. The Shanghai Jiao Tong University Press Aerospace Series publishes titles that cover the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application, but focuses on engineering. Forthcoming titles in the Shanghai Jiao Tong University Press Aerospace Series: Reliability Analysis of Dynamic Systems • Wake Vortex Control • Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems • Computational Intelligence in Aerospace Design • Unsteady Flow and Aeroelasticity in Turbomachinery Authored by a leading figure in Chinese aerospace with 20 years’ professional experience in reliability analysis and engineering simulation. Offers solutions to the challenges of non-linearity, intensive computational cost and complexity in reliability assessment. Aerospace applications and examples used throughout to illustrate accuracy and efficiency achieved with new methods.

Reliability Analysis of Dynamic Systems

Reliability Analysis of Dynamic Systems Book
Author : Bin Wu
Publisher : Academic Press
Release : 2014-09-22
ISBN : 9780323282840
Language : En, Es, Fr & De

GET BOOK

Book Description :

Featuring aerospace examples and applications, Reliability Analysis of Dynamic Systems presents the very latest probabilistic techniques for accurate and efficient dynamic system reliability analysis. While other books cover more broadly the reliability techniques and challenges related to large systems, Dr Bin Wu presents a focused discussion of new methods particularly relevant to the reliability analysis of large aerospace systems under harmonic loads in the low frequency range. Developed and written to help you respond to challenges such as non-linearity of the failure surface, intensive computational costs and complexity in your dynamic system, Reliability Analysis of Dynamic Systems is a specific, detailed and application-focused reference for engineers, researchers and graduate students looking for the latest modeling solutions. The Shanghai Jiao Tong University Press Aerospace Series publishes titles that cover the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application, but focuses on engineering. Forthcoming titles in the Shanghai Jiao Tong University Press Aerospace Series: Reliability Analysis of Dynamic Systems . Wake Vortex Control . Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems . Computational Intelligence in Aerospace Design . Unsteady Flow and Aeroelasticity in Turbomachinery Authored by a leading figure in Chinese aerospace with 20 years' professional experience in reliability analysis and engineering simulation. Offers solutions to the challenges of non-linearity, intensive computational cost and complexity in reliability assessment. Aerospace applications and examples used throughout to illustrate accuracy and efficiency achieved with new methods.

Reliability Analysis of Complex Dynamic Systems

Reliability Analysis of Complex Dynamic Systems Book
Author : Prashanthi Boddu
Publisher : Unknown
Release : 2008
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Reliability Analysis of Complex Dynamic Systems book written by Prashanthi Boddu, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Modern Dynamic Reliability Analysis for Multi state Systems

Modern Dynamic Reliability Analysis for Multi state Systems Book
Author : Anatoly Lisnianski
Publisher : Springer Nature
Release : 2021-09-28
ISBN : 3030524884
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Modern Dynamic Reliability Analysis for Multi state Systems book written by Anatoly Lisnianski, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Dynamic System Reliability

Dynamic System Reliability Book
Author : Liudong Xing,Gregory Levitin,Chaonan Wang
Publisher : John Wiley & Sons
Release : 2019-01-08
ISBN : 1119507685
Language : En, Es, Fr & De

GET BOOK

Book Description :

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Reliability of Dynamic Systems Under Limited Information

Reliability of Dynamic Systems Under Limited Information Book
Author : Richard V. Field (Jr),Mircea Grigoriu
Publisher : Unknown
Release : 2006
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

An Efficient Method to Assess Reliability Under Dynamic Stochastic Loads

An Efficient Method to Assess Reliability Under Dynamic Stochastic Loads Book
Author : Mahdi Norouzi
Publisher : Unknown
Release : 2012
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The objective of this research is to develop an efficient method to study the reliability of dynamic large complex engineering systems. In design of real-life dynamic systems, there are significant uncertainties in modeling the input. For instance, for an offshore wind turbine, there are considerable uncertainties in the power spectral density functions of the wave elevations or the wind speeds. Therefore, it is necessary to evaluate the reliability of a system for different power spectral density functions of the input loads. The reliability analysis of dynamic systems requires performing Monte Carlo simulations in time domain with thousands of replications. The computational cost of such analyses is prohibitive for most real-life complex systems. In this study, a new method is proposed to reduce the computational cost of the reliability study of dynamic systems. This method is applicable to the dynamic systems in which the loads are represented using power spectral density functions. This goal is achieved by estimating the reliability for several power spectral densities of a load by re-weighting the results of a single Monte Carlo simulation for one power spectral density function of the load. The proposed approach is based on Probabilistic Re-analysis method that is similar to the idea of Importance Sampling. That is the main variance reduction technique, which is used to lower the computational cost of Monte Carlo simulation. The proposed method extends the application of the Probabilistic Re-Analysis, which has already been applied to static problems, to dynamic problems. Static problems are modeled using random variables that are invariant with time whereas in dynamic systems both the excitation and the response are stochastic processes varying with time. Utilizing Shinozuka's method is the key idea because it enables representing a time varying random process in terms of random variables. This new approach can significantly lower the cost of the sensitivity reliability analysis of dynamic systems. This study also presents a new approach to apply Subset Simulation efficiently to dynamic problems. Subset Simulation is more efficient than Monte Carlo simulation in estimating the probability of first excursion failure of highly reliable systems. This method is based on the idea that a small failure probability can be calculated as a product of larger conditional probabilities of intermediate events. The method is more efficient because it is much faster to calculate several large probabilities than a single low probability. However, Subset Simulation is often impractical for random vibration problems because it requires considering numerous random variables that makes it very difficult to explore the space of the random variables due to its large dimension. A new approach is proposed in this research to perform Subset Simulation that utilizes Shinozuka's equation to calculate the time series of the loads from a power spectral density function. The commutative property of Shinozuka's equation enables taking advantage of its symmetry, thereby reducing the dimension of the space of the random variables in dynamic problems. Therefore, performing Subset Simulation using the new approach is more efficient than the original Subset Simulation. In addition, Shinozuka's equation assists in integrating Subset Simulation with Probabilistic Re-analysis. This new method, which is called Subset-PRRA, is more efficient than regular Probabilistic Re-analysis as the latter is based on Monte Carlo simulation, whereas Subset-PRRA reuses the results of Subset Simulation. For an offshore wind turbine, the wind and waves are represented by power spectral density functions; Subset-PRRA seems to be a promising tool to cut the computational cost of the sensitivity analysis of first excursion reliability of an offshore wind turbine. The application of the Probabilistic Re-analysis in reliability analysis of an offshore wind turbine is demonstrated in this research through two examples in which only changes in the power spectral density function of the wave elevation are considered. The method is also applicable to the case that the wind spectrum changes, but requires calculation of wind field time histories using Shinozuka's method. Finally, a probabilistic approach for the structural design of an offshore wind turbine under the Lake Erie environment is presented. To perform probabilistic design, the dependence between wind, wave and period should be modeled accurately. Modeling the dependence between wind and wave is expensive, as it requires a large amount of data. Many researchers, similar to the approach presented in the International Electrotechnical Commission standards, assume that wave height follows standard distributions conditional on wind speed. In this work, an alternative approach is used that is based on the application of copulas. This approach is more complete because the joint distribution is obtained without making any assumption on the conditional distributions. Using the joint distribution, a methodology to find the required load capacity of the structure to meet the target reliability based on Monte Carlo simulation and Tail-fitting method is presented.

Probabilistic Assessment of Dynamic System Performance

Probabilistic Assessment of Dynamic System Performance Book
Author : Anonim
Publisher : Unknown
Release : 1993
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safe operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.

Binary Decision Diagrams and Extensions for System Reliability Analysis

Binary Decision Diagrams and Extensions for System Reliability Analysis Book
Author : Liudong Xing,Suprasad V. Amari
Publisher : John Wiley & Sons
Release : 2015-06-15
ISBN : 1119178010
Language : En, Es, Fr & De

GET BOOK

Book Description :

Recent advances in science and technology have made modern computing and engineering systems more powerful and sophisticated than ever. The increasing complexity and scale imply that system reliability problems not only continue to be a challenge but also require more efficient models and solutions. This is the first book systematically covering the state-of-the-art binary decision diagrams and their extended models, which can provide efficient and exact solutions to reliability analysis of large and complex systems. The book provides both basic concepts and detailed algorithms for modelling and evaluating reliability of a wide range of complex systems, such as multi-state systems, phased-mission systems, fault-tolerant systems with imperfect fault coverage, systems with common-cause failures, systems with disjoint failures, and systems with functional dependent failures. These types of systems abound in safety-critical or mission-critical applications such as aerospace, circuits, power systems, medical systems, telecommunication systems, transmission systems, traffic light systems, data storage systems, and etc. The book provides both small-scale illustrative examples and large-scale benchmark examples to demonstrate broad applications and advantages of different decision diagrams based methods for complex system reliability analysis. Other measures including component importance and failure frequency are also covered. A rich set of references is cited in the book, providing helpful resources for readers to pursue further research and study of the topics. The target audience of the book is reliability and safety engineers or researchers. The book can serve as a textbook on system reliability analysis. It can also serve as a tutorial and reference book on decision diagrams, multi-state systems, phased-mission systems, and imperfect fault coverage models.

Space Fault Tree Theory and System Reliability Analysis

Space Fault Tree Theory and System Reliability Analysis Book
Author : Tiejun CUI,Shasha LI
Publisher : EDP Sciences
Release : 2020-12-10T00:00:00+01:00
ISBN : 2759825043
Language : En, Es, Fr & De

GET BOOK

Book Description :

The significance of the existence of the system is to realize its function and maintain its stability, that is, the reliability and stability of the reliability. Reliability is affected by factors, component properties and system structure, and its changes are complex. In order to solve this problem, the authors proposed the space fault tree theory in 2012. This book is the first time that the fundamental part of the theory has been presented internationally. The authors of the book are Pro. Tiejun Cui and Dr. Shasha Li.

Reliability Methods in Dynamic System Analysis

Reliability Methods in Dynamic System Analysis Book
Author : Brad Ernest Munoz
Publisher : Unknown
Release : 2012
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Standard techniques used to analyze a system's response with uncertain system parameters or inputs, are generally Importance sampling methods. Sampling methods require a large number of simulation runs before the system output statistics can be analyzed. As model fidelity increases, sampling techniques become computationally infeasible, and Reliability methods have gained popularity as an analysis method that requires significantly fewer simulation runs. Reliability analysis is an analytic technique which finds a particular point in the design space that can accurately be related to the probability of system failure. However, application to dynamic systems have remained limited. In the following thesis a First Order Reliability Method (FORM) is used to determine the failure probability of a dynamic system due to system/input uncertainties. A pendulum cart system is used as a case study to demonstrate the FORM on a dynamic system. Three failure modes are discussed which correspond to the maximum pendulum angle, the maximum system velocity, and a combined requirement that neither the maximum pendulum angle or system velocity are exceeded. An explicit formulation is generated from the implicit formulation using a Response Surface Methodology, and the FORM is performed using the explicit estimate. Although the analysis converges with minimal simulation computations, attempts to verify FORM results illuminate current limitations of the methodology. The results of this initial study conclude that, currently, sampling techniques are necessary to verify the FORM results, which restricts the potential applications of the FORM methodology. Suggested future work focuses on result verification without the use of Importance sampling which would allow Reliability methods to have widespread applicability.

Modeling for Reliability Analysis

Modeling for Reliability Analysis Book
Author : Jan Pukite,Paul Pukite
Publisher : John Wiley & Sons
Release : 1998-06-22
ISBN : 0780334825
Language : En, Es, Fr & De

GET BOOK

Book Description :

"Markov modeling has long been accepted as a fundamental and powerful technique for the fault tolerance analysis of mission-critical applications. However, the elaborate computations required have often made Markov modeling too time-consuming to be of practical use on these complex systems. With this hands-on tool, designers can use the Markov modeling technique to analyze safety, reliability, maintainability, and cost-effectiveness factors in the full range of complex systems in use today. Featuring ground-breaking simulation software and a comprehensive reference manual, MARKOV MODELING FOR RELIABILITY ANALYSIS helps system designers surmount the mathematical computations that have previously prevented effective reliability analysis. The text and software compose a valuable self-study tool that is complete with detailed explanations, examples, and a library of Markov models that can be used for experiments and as derivations for new simulation models. The book details how these analyses are conducted, while providing hands-on instruction on how to develop reliability models for the full range of system configurations. Computer-Aided Rate Modeling and Simulation (CARMS) software is an integrated modeling tool that includes a diagram-based environment for model setup, a spreadsheet like interface for data entry, an expert system link for automatic model construction, and an interactive graphic interface for displaying simulation results."

Contribution to Reliable Control of Dynamic Systems

Contribution to Reliable Control of Dynamic Systems Book
Author : Jean Carlo Salazar Cortés
Publisher : Unknown
Release : 2020
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

This thesis presents sorne contributions to the field of Health-Aware Control (HAC) of dynamic systems.In the first part of this thesis, a review of the concepts and methodologies related to reliability versus degradation and fault tolerant control versus health-aware control is presented. Firstly, in an attempt to unify concepts, an overview of HAC, degradation, and reliability modeling including some of the most relevant theoretical and applied contributions is given.Moreover, reliability modeling is formalized and exemplified using the structure function, Bayesian networks (BNs) and Dynamic Bayesian networks (DBNs) as modeling tools in reliability analysis. In addition, some Reliability lmportance Measures (RIMs) are presented.In particular, this thesis develops BNs models for overall system reliability analysis through the use of Bayesian inference techniques. Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems.For the HAC scheme implementation, this thesis presents and discusses the integration of actuators health information by means of RIMs and degradation in Model Predictive Control (MPC) and Linear Quadratic Regulator algorithms.In the proposed strategies, the cost function parameters are tuned using RIMs. The methodology is able to avoid the occurrence of catastrophic and incipient faults by monitoring the overall system reliability.The proposed HAC strategies are applied to a Drinking Water Network (DWN) and a multirotor UAV system. Moreover, a third approach, which uses MPC and restricts the degradation of the system components is applied to a twin rotor system.Finally, this thesis presents and discusses two reliability interpretations. These interpretations, namely instantaneous and expected, differ in the manner how reliability is evaluated and how its evolution along time is considered. This comparison is made within a HAC framework and studies the system reliability under both approaches.

Stochastic Models in Reliability Engineering

Stochastic Models in Reliability Engineering Book
Author : Lirong Cui,Ilia Frenkel,Anatoly Lisnianski
Publisher : CRC Press
Release : 2020-09-01
ISBN : 1000094618
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.

Reliability and Safety Assessment of Dynamic Process Systems

Reliability and Safety Assessment of Dynamic Process Systems Book
Author : Tunc Aldemir,Nathan O. Siu,Ali Mosleh,P.Carlo Cacciabue,B.Gül Göktepe
Publisher : Springer Science & Business Media
Release : 2013-06-29
ISBN : 3662030411
Language : En, Es, Fr & De

GET BOOK

Book Description :

Current issues and approaches in the reliability and safety analysis of dynamic process systems are the subject of this book. The authors of the chapters are experts from nuclear, chemical, mechanical, aerospace and defense system industries, and from institutions including universities, national laboratories, private consulting companies, and regulatory bodies. Both the conventional approaches and dynamic methodologies which explicitly account for the time element in system evolution in failure modeling are represented. The papers on conventional approaches concentrate on the modeling of dynamic effects and the need for improved methods. The dynamic methodologies covered include the DYLAM methodology, the theory of continuous event trees, several Markov model construction procedures, Monte Carlo simulation, and utilization of logic flowgraphs in conjunction with Petri nets. Special emphasis is placed on human factors such as procedures and training.

Reliability Management and Engineering

Reliability Management and Engineering Book
Author : Harish Garg,Mangey Ram
Publisher : CRC Press
Release : 2020-06-19
ISBN : 1000067726
Language : En, Es, Fr & De

GET BOOK

Book Description :

Reliability technology plays an important role in the present era of industrial growth, optimal efficiency, and reducing hazards. This book provides insights into current advances and developments in reliability engineering, and the research presented is spread across all branches. It discusses interdisciplinary solutions to complex problems using different approaches to save money, time, and manpower. It presents methodologies of coping with uncertainty in reliability optimization through the usage of various techniques such as soft computing, fuzzy optimization, uncertainty, and maintenance scheduling. Case studies and real-world examples are presented along with applications that can be used in practice. This book will be useful to researchers, academicians, and practitioners working in the area of reliability and systems assurance engineering. Provides current advances and developments across different branches of engineering. Reviews and analyses case studies and real-world examples. Presents applications to be used in practice. Includes numerous examples to illustrate theoretical results.

Structural Reliability Analysis and Prediction

Structural Reliability Analysis and Prediction Book
Author : Robert E. Melchers,Andre T. Beck
Publisher : John Wiley & Sons
Release : 2018-04-02
ISBN : 1119265991
Language : En, Es, Fr & De

GET BOOK

Book Description :

Structural Reliability Analysis and Prediction, Third Edition is a textbook which addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. This book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accessible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. This new edition has been updated to cover new developments and applications and a new chapter is included which covers structural optimization in the context of reliability analysis. New examples and end of chapter problems are also now included.

Model Based Safety and Assessment

Model Based Safety and Assessment Book
Author : Frank Ortmeier,Antoine Rauzy
Publisher : Springer
Release : 2014-09-24
ISBN : 3319122142
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the refereed proceedings of the 4th International Symposium on Model-Based Safety and Assessment, IMBSA 2014, held in Munich, Germany, in October 2014. The 15 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on modeling paradigms, validation and testing, fault detection and handling, safety assessment in the automotive domain, and case studies.