Skip to main content

R And Data Mining

In Order to Read Online or Download R And Data Mining Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

R Data Mining

R Data Mining Book
Author : Andrea Cirillo
Publisher : Packt Publishing Ltd
Release : 2017-11-29
ISBN : 1787129233
Language : En, Es, Fr & De

GET BOOK

Book Description :

Mine valuable insights from your data using popular tools and techniques in R About This Book Understand the basics of data mining and why R is a perfect tool for it. Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it. Apply effective data mining models to perform regression and classification tasks. Who This Book Is For If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required. What You Will Learn Master relevant packages such as dplyr, ggplot2 and so on for data mining Learn how to effectively organize a data mining project through the CRISP-DM methodology Implement data cleaning and validation tasks to get your data ready for data mining activities Execute Exploratory Data Analysis both the numerical and the graphical way Develop simple and multiple regression models along with logistic regression Apply basic ensemble learning techniques to join together results from different data mining models Perform text mining analysis from unstructured pdf files and textual data Produce reports to effectively communicate objectives, methods, and insights of your analyses In Detail R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R. It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data. Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets. Style and approach This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.

R and Data Mining

R and Data Mining Book
Author : Yanchang Zhao
Publisher : Academic Press
Release : 2012-12-31
ISBN : 012397271X
Language : En, Es, Fr & De

GET BOOK

Book Description :

R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. Presents an introduction into using R for data mining applications, covering most popular data mining techniques Provides code examples and data so that readers can easily learn the techniques Features case studies in real-world applications to help readers apply the techniques in their work

Data Mining with R

Data Mining with R Book
Author : Luis Torgo
Publisher : CRC Press
Release : 2016-11-30
ISBN : 1315399091
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Exam Prep for R and Data Mining

Exam Prep for  R and Data Mining Book
Author : Anonim
Publisher : Unknown
Release : 2021-05-11
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Exam Prep for R and Data Mining book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Data Mining with Rattle and R

Data Mining with Rattle and R Book
Author : Graham Williams
Publisher : Springer Science & Business Media
Release : 2011-08-04
ISBN : 144199890X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Data Mining Algorithms

Data Mining Algorithms Book
Author : Pawel Cichosz
Publisher : John Wiley & Sons
Release : 2015-01-27
ISBN : 111833258X
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective"--

Educational Data Mining with R and Rattle

Educational Data Mining with R and Rattle Book
Author : R. S. Kamath,R. K. Kamat
Publisher : River Publishers
Release : 2016
ISBN : 8793379315
Language : En, Es, Fr & De

GET BOOK

Book Description :

Educational Data Mining (EDM) is one of the emerging fields in the pedagogy and andragogy paradigm, it concerns the techniques which research data coming from the educational domain. An archetype that is covered is that of learning by example. This is a guide for EDM implementation using R and Rattle open source data mining tools.

Data Mining with R

Data Mining with R Book
Author : Luis Torgo
Publisher : Taylor & Francis
Release : 2011
ISBN : 9780429292859
Language : En, Es, Fr & De

GET BOOK

Book Description :

The versatile capabilities and large set of add-on packages make R an excellent alternative to many existing and often expensive data mining tools. Exploring this area from the perspective of a practitioner, Data Mining with R: Learning with Case Studies uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, the book covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. To present the main data mining processes and techniques, the author takes a hands-on approach that utilizes a series of detailed, real-world case studies: Predicting algae blooms Predicting stock market returns Detecting fraudulent transactions Classifying microarray samples With these case studies, the author supplies all necessary steps, code, and data. Web ResourceA supporting website mirrors the do-it-yourself approach of the text. It offers a collection of freely available R source files that encompass all the code used in the case studies. The site also provides the data sets from the case studies as well as an R package of several functions.

Learning Data Mining with R

Learning Data Mining with R Book
Author : Bater Makhabel
Publisher : Packt Publishing Ltd
Release : 2015-01-31
ISBN : 178398211X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is intended for the budding data scientist or quantitative analyst with only a basic exposure to R and statistics. This book assumes familiarity with only the very basics of R, such as the main data types, simple functions, and how to move data around. No prior experience with data mining packages is necessary; however, you should have a basic understanding of data mining concepts and processes.

Data Mining for Business Intelligence

Data Mining for Business Intelligence Book
Author : Galit Shmueli,Nitin R. Patel,Peter C. Bruce
Publisher : John Wiley & Sons
Release : 2006-12-11
ISBN : 0470084855
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

R Data Mining Blueprints

R Data Mining Blueprints Book
Author : Pradeepta Mishra
Publisher : Unknown
Release : 2016-07-29
ISBN : 9781783989683
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download R Data Mining Blueprints book written by Pradeepta Mishra, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Exam Prep for Data Mining with R Learning with Case

Exam Prep for  Data Mining with R  Learning with Case     Book
Author : Anonim
Publisher : Unknown
Release : 2021-05-11
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Exam Prep for Data Mining with R Learning with Case book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Social Media Mining with R

Social Media Mining with R Book
Author : Nathan Danneman,Richard Heimann
Publisher : Packt Publishing Ltd
Release : 2014-03-25
ISBN : 1783281782
Language : En, Es, Fr & De

GET BOOK

Book Description :

A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience.

Learning Data Mining with R

Learning Data Mining with R Book
Author : Romeo Kienzler
Publisher : Unknown
Release : 2016
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

"Data mining is a growing demand on the market as the world is generating data at an increasing pace. R is a popular programming language for statistics. It can be used for day-to-day data analysis tasks. Data mining is a very broad topic and takes some time to learn. This course will help you to understand the mathematical basics quickly, and then you can directly apply what you've learned in R. This course covers each and every aspect of data mining in order to prepare you for real-world problems. You'll come to understand the different disciplines in data mining. In every discipline, there exist a variety of different algorithms. At least one algorithm of the various classes of algorithms will be covered to give you a foundation to further apply your knowledge to dive deeper into the different flavors of algorithms. After completing this course, you will be able to solve real-world data mining problems."--Resource description page.

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R Book
Author : Johannes Ledolter
Publisher : John Wiley & Sons
Release : 2013-05-28
ISBN : 1118572157
Language : En, Es, Fr & De

GET BOOK

Book Description :

Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Data Mining Applications with R

Data Mining Applications with R Book
Author : Yanchang Zhao,Yonghua Cen
Publisher : Academic Press
Release : 2013-11-26
ISBN : 0124115209
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

R Data Mining Projects

R Data Mining Projects Book
Author : Pradeepta Mishra
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

"The R language is a powerful open source functional programming language. At its core, R is a statistical programming language that provides impressive tools for data mining and analysis. It enables you to create high-level graphics and offers an interface to other languages. This means R is best suited to producing data and visual analytics through customization scripts and commands, instead of the typical statistical tools that provide tick boxes and drop-down menus for users. This video course explores data mining techniques, showing you how to apply different mining concepts to various statistical and data applications in a wide range of fields. We will teach you about R and its application to data mining, and give you relevant and useful information you can use to develop and improve your applications. It will help you complete complex data mining cases and guide you through handling issues you might encounter during projects."--Resource description page.

An Introduction to Data Analysis in R

An Introduction to Data Analysis in R Book
Author : Alfonso Zamora Saiz,Carlos Quesada González,Lluís Hurtado Gil,Diego Mondéjar Ruiz
Publisher : Springer Nature
Release : 2020-07-27
ISBN : 3030489973
Language : En, Es, Fr & De

GET BOOK

Book Description :

This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.

R Data Analysis and Visualization

R  Data Analysis and Visualization Book
Author : Tony Fischetti,Brett Lantz,Jaynal Abedin,Hrishi V. Mittal,Bater Makhabel,Edina Berlinger,Ferenc Illes,Milan Badics,Adam Banai,Gergely Daroczi
Publisher : Packt Publishing Ltd
Release : 2016-06-24
ISBN : 1786460483
Language : En, Es, Fr & De

GET BOOK

Book Description :

Master the art of building analytical models using R About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Build and customize publication-quality visualizations of powerful and stunning R graphs Develop key skills and techniques with R to create and customize data mining algorithms Use R to optimize your trading strategy and build up your own risk management system Discover how to build machine learning algorithms, prepare data, and dig deep into data prediction techniques with R Who This Book Is For This course is for data scientist or quantitative analyst who are looking at learning R and take advantage of its powerful analytical design framework. It's a seamless journey in becoming a full-stack R developer. What You Will Learn Describe and visualize the behavior of data and relationships between data Gain a thorough understanding of statistical reasoning and sampling Handle missing data gracefully using multiple imputation Create diverse types of bar charts using the default R functions Familiarize yourself with algorithms written in R for spatial data mining, text mining, and so on Understand relationships between market factors and their impact on your portfolio Harness the power of R to build machine learning algorithms with real-world data science applications Learn specialized machine learning techniques for text mining, big data, and more In Detail The R learning path created for you has five connected modules, which are a mini-course in their own right. As you complete each one, you'll have gained key skills and be ready for the material in the next module! This course begins by looking at the Data Analysis with R module. This will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility. The second place to explore is R Graphs, which will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. You'll learn how to produce, customize, and publish advanced visualizations using this popular and powerful framework. With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs. The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well-versed with various financial techniques using R and will be able to place good bets while making financial decisions. Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. You'll also learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, and so on. Style and approach Learn data analysis, data visualization techniques, data mining, and machine learning all using R and also learn to build models in quantitative finance using this powerful language.

Data Mining and Data Warehousing

Data Mining and Data Warehousing Book
Author : Parteek Bhatia
Publisher : Cambridge University Press
Release : 2019-04-30
ISBN : 1108727743
Language : En, Es, Fr & De

GET BOOK

Book Description :

Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Nave Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.