Skip to main content

Quantum Information Processing Quantum Computing And Quantum Error Correction

In Order to Read Online or Download Quantum Information Processing Quantum Computing And Quantum Error Correction Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Quantum Information Processing Quantum Computing and Quantum Error Correction

Quantum Information Processing  Quantum Computing  and Quantum Error Correction Book
Author : Ivan B. Djordjevic
Publisher : Academic Press
Release : 2021-03-15
ISBN : 0128219823
Language : En, Es, Fr & De

GET BOOK

Book Description :

The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction Book
Author : Ivan Djordjevic
Publisher : Academic Press
Release : 2012
ISBN : 0123854911
Language : En, Es, Fr & De

GET BOOK

Book Description :

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Classical and Quantum Information

Classical and Quantum Information Book
Author : Dan C. Marinescu
Publisher : Academic Press
Release : 2011-01-07
ISBN : 9780123838759
Language : En, Es, Fr & De

GET BOOK

Book Description :

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

Quantum Information Processing Quantum Computing and Quantum Error Correction

Quantum Information Processing  Quantum Computing  and Quantum Error Correction Book
Author : Ivan B. Djordjevic
Publisher : Academic Press
Release : 2021-02-20
ISBN : 0128219874
Language : En, Es, Fr & De

GET BOOK

Book Description :

The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Classical and Quantum Information

Classical and Quantum Information Book
Author : Dan C. Marinescu
Publisher : Academic Press
Release : 2011-02-22
ISBN : 9780123838742
Language : En, Es, Fr & De

GET BOOK

Book Description :

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information Book
Author : Michael A. Nielsen,Isaac L. Chuang
Publisher : Cambridge University Press
Release : 2010-12-09
ISBN : 1139495488
Language : En, Es, Fr & De

GET BOOK

Book Description :

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Teleportation and Entanglement

Quantum Teleportation and Entanglement Book
Author : Akira Furusawa,Peter van Loock
Publisher : John Wiley & Sons
Release : 2011-05-03
ISBN : 3527635297
Language : En, Es, Fr & De

GET BOOK

Book Description :

Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information.

Quantum Computing

Quantum Computing Book
Author : Eleanor Rieffel,Wolfgang Polak
Publisher : Scientific and Engineering Computation
Release : 2014-05-09
ISBN : 0262526670
Language : En, Es, Fr & De

GET BOOK

Book Description :

"The text covers the basic building blocks of quantum information processing, quantum bits and quantum gates, showing their relationship to the key quantum concepts of quantum measurement, quantum state transformation, and entanglement between quantum subsystems; it treats quantum algorithms, discussing notions of complexity and describing a number of simple algorithms as well as the most significant algorithms to date; and it explores entanglement and robust quantum computation, investigating such topics as quantifying entanglement, decoherence, quantum error correction, and fault tolerance."--Back cover.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction Book
Author : Ivan Djordjevic
Publisher : Academic Press
Release : 2012-05-23
ISBN : 012385492X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Computing and Communications

Quantum Computing and Communications Book
Author : Michael Brooks
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 1447108396
Language : En, Es, Fr & De

GET BOOK

Book Description :

The first handbook to provide a comprehensive inter-disciplinary overview of QCC. It includes peer-reviewed definitions of key terms such as Quantum Logic Gates, Error Correction, Quantum Dots, Nuclear Magnetic Resonance, Quantum Holography, and Quantum Cryptography. There are also reports on major application areas, principles of QCC, and targets, benchmarks and challenges, making this an invaluable buy for any university department with this exciting new topic in its curriculum. It equally provides a unique overview of a fast-moving and multidisciplinary topic for researchers, students, lecturers, and even the interested amateur.

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information Book
Author : Michael A. Nielsen,Isaac L. Chuang
Publisher : Cambridge University Press
Release : 2010-12-09
ISBN : 9781107002173
Language : En, Es, Fr & De

GET BOOK

Book Description :

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Introduction to Quantum Information Science

Introduction to Quantum Information Science Book
Author : Masahito Hayashi,Satoshi Ishizaka,Akinori Kawachi,Gen Kimura,Tomohiro Ogawa
Publisher : Springer
Release : 2014-08-22
ISBN : 3662435020
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.

Quantum Computation and Quantum Information Theory

Quantum Computation and Quantum Information Theory Book
Author : C Macchiavello,G M Palma,A Zeilinger
Publisher : World Scientific
Release : 2001-01-17
ISBN : 9814494054
Language : En, Es, Fr & De

GET BOOK

Book Description :

Quantum information theory has revolutionised our view on the true nature of information and has led to such intriguing topics as teleportation and quantum computation. The field — by its very nature strongly interdisciplinary, with deep roots in the foundations both of quantum mechanics and of information theory and computer science — has become a major subject for scientists working in fields as diverse as quantum optics, superconductivity or information theory, all the way to computer engineers. The aim of this book is to provide guidance and introduce the broad literature in all the various aspects of quantum information theory. The topics covered range from the fundamental aspects of the theory, like quantum algorithms and quantum complexity, to the technological aspects of the design of quantum-information-processing devices. Each section of the book consists of a selection of key papers (with particular attention to their tutorial value), chosen and introduced by leading scientists in the specific area. An entirely new introduction to quantum complexity has been specially written for the book. Contents:Introductory ConceptsQuantum Entanglement ManipulationQuantum AlgorithmsQuantum ComplexityQuantum Error CorrectionQuantum ChannelsEntanglement Purification and Long-Distance Quantum CommunicationQuantum Key DistributionCavity Quantum ElectrodynamicsQuantum Computation with Ion TrapsJosephson Junctions and Quantum ComputationQuantum Computing in Optical LatticesQuantum Computation and Quantum Communication with ElectronsNMR Quantum Computing Readership: Physicists. Keywords:Quantum Computation;Quantum Information Theory;Quantum Cryptography;Quantum Error Correction;Quantum Complexity;Quantum Algorithms;Quantum Gates;Foundation of Quantum Mechanics;Quantum Theory;Quantum Channels;Quantum Mechanics

Error Characterization and Quantum Control Benchmarking in Liquid State NMR Using Quantum Information Processing Techniques

Error Characterization and Quantum Control Benchmarking in Liquid State NMR Using Quantum Information Processing Techniques Book
Author : Martin Laforest
Publisher : Unknown
Release : 2008
ISBN : 9780494432945
Language : En, Es, Fr & De

GET BOOK

Book Description :

Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.

Practical Advances in Quantum Error Correction Communication

Practical Advances in Quantum Error Correction   Communication Book
Author : Daniel Benjamin Criger,University of Waterloo. Department of Physics & Astronomy
Publisher : Unknown
Release : 2013
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Quantum computing exists at the intersection of mathematics, physics, chemistry, and engineering; the main goal of quantum computing is the creation of devices and algorithms which use the properties of quantum mechanics to store, manipulate and measure information. There exist many families of algorithms, which, using non-classical logical operations, can outperform traditional, classical algorithms in terms of memory and processing requirements. In addition, quantum computing devices are fundamentally smaller than classical processors and memory elements; since the physical models governing their performance are applicable on all scales, as opposed to classical logic elements, whose underlying principles rely on the macroscopic nature of the device in question. Quantum algorithms, for the most part, are predicated on a theory of resources. It is often assumed that quantum computers can be placed in a precise fiducial state prior to computation, and that logical operations are perfect, inducing no error on the system which they affect. These assumptions greatly simplify algorithmic design, but are fundamentally unrealistic. In order to justify their use, it is necessary to develop a framework for using a large number of imperfect devices to simulate the action of a perfect device, with some acceptable probability of failure. This is the study of fault-tolerant quantum computing. In order to pursue this study effectively, it is necessary to understand the fundamental nature of generic quantum states and operations, as well as the means by which one can correct quantum errors. Additionally, it is important to attempt to minimize the use of computational resources in achieving error reduction and fault-tolerant computing. This thesis is concerned with three projects related to the use of error-prone quantum systems to transmit and manipulate information. The first of these is concerned with the use of imperfectly-prepared states in error-correction routines. Using optimal quantum error correction, we are able to deduce a method of partially protecting encoded quantum information against preparation errors prior to encoding, using no additional qubits. The second of these projects details the search for entangled states which can be used to transmit classical information over quantum channels at a rate superior to classical states. The third of these projects concerns the transcoding of data from one quantum code into another using few ancillary resources. The descriptions of these projects are preceded by a brief introduction to representations of quantum states and channels, for completeness. Three techniques of general interest are presented in appendices. The first is an introduction to, and a minor advance in the development of optimal error correction codes. The second is a more efficient means of calculating the action of a quantum channel on a given state, given that the channel acts non-trivially only on a subsystem, rather than the entire system. Finally, we include documentation on a software package developed to aid the search for quantum transcoding operations.

A Group Theoretic Approach to Quantum Information

A Group Theoretic Approach to Quantum Information Book
Author : Masahito Hayashi
Publisher : Springer
Release : 2016-10-31
ISBN : 331945241X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Quantum Computing

Quantum Computing Book
Author : Mikio Nakahara,Tetsuo Ohmi
Publisher : CRC Press
Release : 2008-03-11
ISBN : 9780750309837
Language : En, Es, Fr & De

GET BOOK

Book Description :

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspects of quantum computing and the second focused on several candidates of a working quantum computer, evaluating them according to the DiVincenzo criteria. Topics in Part I Linear algebra Principles of quantum mechanics Qubit and the first application of quantum information processing—quantum key distribution Quantum gates Simple yet elucidating examples of quantum algorithms Quantum circuits that implement integral transforms Practical quantum algorithms, including Grover’s database search algorithm and Shor’s factorization algorithm The disturbing issue of decoherence Important examples of quantum error-correcting codes (QECC) Topics in Part II DiVincenzo criteria, which are the standards a physical system must satisfy to be a candidate as a working quantum computer Liquid state NMR, one of the well-understood physical systems Ionic and atomic qubits Several types of Josephson junction qubits The quantum dots realization of qubits Looking at the ways in which quantum computing can become reality, this book delves into enough theoretical background and experimental research to support a thorough understanding of this promising field.

Quantum Computing

Quantum Computing Book
Author : Jozef Gruska
Publisher : McGraw-Hill Book Company Limited
Release : 1999
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

In quantum computing, we witness an exciting and very promising merge of two of the deepest and most successful scientific and technological developments of this century: quantum physics and computer science. The book takes a very broad view of quantum computing and information processing in general. It deals with such areas as quantum algorithms, automata, complexity theory, information and communication, cryptography and theoretical results. These include such topics as quantum error correcting codes and methods of quantum fault tolerance computing, which have made the vision of a real quantum computer come closer. No previous knowledge of quantum mechanics is required. The book is written as a self-study introduction to quantum computing and can be used for a one-semester course on quantum computing, especially for computer scientists. To meet this aim the book contains numerous examples, figures and exercises.

Quantum Information

Quantum Information Book
Author : Gregg Jaeger
Publisher : Springer Science & Business Media
Release : 2007-04-03
ISBN : 0387369449
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book gives an overview for practitioners and students of quantum physics and information science. It provides ready access to essential information on quantum information processing and communication, such as definitions, protocols and algorithms. Quantum information science is rarely found in clear and concise form. This book brings together this information from its various sources. It allows researchers and students in a range of areas including physics, photonics, solid-state electronics, nuclear magnetic resonance and information technology, in their applied and theoretical branches, to have this vital material directly at hand.

Isotope Based Quantum Information

Isotope Based Quantum Information Book
Author : Vladimir G. Plekhanov
Publisher : Springer Science & Business Media
Release : 2012-05-26
ISBN : 3642287506
Language : En, Es, Fr & De

GET BOOK

Book Description :

The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.