Skip to main content

Predictive Analytics And Data Mining

In Order to Read Online or Download Predictive Analytics And Data Mining Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Data Mining and Predictive Analytics

Data Mining and Predictive Analytics Book
Author : Daniel T. Larose,Chantal D. Larose
Publisher : John Wiley & Sons
Release : 2015-03-16
ISBN : 1118116194
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn methods of data analysis and their application to real-world data sets. Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content

Predictive Analytics Data Mining and Big Data

Predictive Analytics  Data Mining and Big Data Book
Author : S. Finlay
Publisher : Springer
Release : 2014-07-01
ISBN : 1137379286
Language : En, Es, Fr & De

GET BOOK

Book Description :

This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Predictive Analytics and Data Mining

Predictive Analytics and Data Mining Book
Author : Vijay Kotu,Bala Deshpande
Publisher : Morgan Kaufmann
Release : 2014-11-27
ISBN : 0128016507
Language : En, Es, Fr & De

GET BOOK

Book Description :

Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Predictive Analytics

Predictive Analytics Book
Author : Dursun Delen
Publisher : FT Press Analytics
Release : 2020-10-30
ISBN : 9780136738510
Language : En, Es, Fr & De

GET BOOK

Book Description :

In Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for students. Using predictive analytics techniques, students can uncover hidden patterns and correlations in their data, and leverage this insight to improve a wide range of business decisions. Delen's holistic approach covers all this, and more: Data mining processes, methods, and techniques The role and management of data Predictive analytics tools and metrics Techniques for text and web mining, and for sentiment analysis Integration with cutting-edge Big Data approaches Throughout, Delen promotes understanding by presenting numerous conceptual illustrations, motivational success stories, failed projects that teach important lessons, and simple, hands-on tutorials that set this guide apart from competitors.

Predictive Analytics for Marketers

Predictive Analytics for Marketers Book
Author : Barry Leventhal
Publisher : Kogan Page Publishers
Release : 2018-02-03
ISBN : 0749479949
Language : En, Es, Fr & De

GET BOOK

Book Description :

Predictive analytics has revolutionized marketing practice. It involves using many techniques from data mining, statistics, modelling, machine learning and artificial intelligence, to analyse current data and make predictions about unknown future events. In business terms, this enables companies to forecast consumer behaviour and much more. Predictive Analytics for Marketers will guide marketing professionals on how to apply predictive analytical tools to streamline business practices. Including comprehensive coverage of an array of predictive analytic tools and techniques, this book enables readers to harness patterns from past data, to make accurate and useful predictions that can be converted to business success. Truly global in its approach, the insights these techniques offer can be used to manage resources more effectively across all industries and sectors. Written in clear, non-technical language, Predictive Analytics for Marketers contains case studies from the author's more than 25 years of experience and articles from guest contributors, demonstrating how predictive analytics has been used to successfully achieve a range of business purposes.

Descriptive Data Mining

Descriptive Data Mining Book
Author : David L. Olson,Georg Lauhoff
Publisher : Springer
Release : 2019-05-06
ISBN : 9811371814
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an overview of data mining methods demonstrated by software. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Diagnostic analytics can apply analysis to sensor input to direct control systems automatically. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on descriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic software support to data visualization. Chapter 3 covers fundamentals of market basket analysis, and Chapter 4 provides demonstration of RFM modeling, a basic marketing data mining tool. Chapter 5 demonstrates association rule mining. Chapter 6 is a more in-depth coverage of cluster analysis. Chapter 7 discusses link analysis. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Predictive Analytics For Dummies

Predictive Analytics For Dummies Book
Author : Dr. Anasse Bari,Mohamed Chaouchi,Tommy Jung
Publisher : John Wiley & Sons
Release : 2014-03-06
ISBN : 1118729412
Language : En, Es, Fr & De

GET BOOK

Book Description :

Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies.

The Essential Elements of Predictive Analytics and Data Mining

The Essential Elements of Predictive Analytics and Data Mining Book
Author : Anonim
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn the basics of data mining and predictive analytics. Learn the steps of a real-world project, from defining the problem to putting the solution into practice, and review CRISP-DM and the 9 laws of data mining.

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2016-04-18
ISBN : 1118729277
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Commercial Data Mining

Commercial Data Mining Book
Author : David Nettleton
Publisher : Elsevier
Release : 2014-01-29
ISBN : 012416658X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience

Effective CRM using Predictive Analytics

Effective CRM using Predictive Analytics Book
Author : Antonios Chorianopoulos
Publisher : John Wiley & Sons
Release : 2016-01-19
ISBN : 1119011558
Language : En, Es, Fr & De

GET BOOK

Book Description :

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.

Data Mining and Predictive Analysis

Data Mining and Predictive Analysis Book
Author : Colleen McCue
Publisher : Butterworth-Heinemann
Release : 2014-12-30
ISBN : 0128004088
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, 2nd Edition, describes clearly and simply how crime clusters and other intelligence can be used to deploy security resources most effectively. Rather than being reactive, security agencies can anticipate and prevent crime through the appropriate application of data mining and the use of standard computer programs. Data Mining and Predictive Analysis offers a clear, practical starting point for professionals who need to use data mining in homeland security, security analysis, and operational law enforcement settings. This revised text highlights new and emerging technology, discusses the importance of analytic context for ensuring successful implementation of advanced analytics in the operational setting, and covers new analytic service delivery models that increase ease of use and access to high-end technology and analytic capabilities. The use of predictive analytics in intelligence and security analysis enables the development of meaningful, information based tactics, strategy, and policy decisions in the operational public safety and security environment. Discusses new and emerging technologies and techniques, including up-to-date information on predictive policing, a key capability in law enforcement and security Demonstrates the importance of analytic context beyond software Covers new models for effective delivery of advanced analytics to the operational environment, which have increased access to even the most powerful capabilities Includes terminology, concepts, practical application of these concepts, and examples to highlight specific techniques and approaches in crime and intelligence analysis

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Peter Gedeck,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2019-11-05
ISBN : 1119549841
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Predictive Data Mining Models

Predictive Data Mining Models Book
Author : David L. Olson,Desheng Wu
Publisher : Springer
Release : 2019-08-07
ISBN : 9811396647
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R’) and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on prescriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Predictive Analytics

Predictive Analytics Book
Author : Richard Hurley
Publisher : Unknown
Release : 2019-12-30
ISBN : 9781654027988
Language : En, Es, Fr & De

GET BOOK

Book Description :

If you want to learn about predictive analytics without having to read a boring textbook, then keep reading... Companies are collecting more data from ever. With the ease of collecting all that data, all the different sources where you can receive the data, and the inexpensive storage, it makes sense to collect as much data as possible. But without a good analysis of that data, and without some time to really figure out what trends and insights are inside all of it, that data becomes worthless. This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future. This guidebook is going to look at predictive analytics, and some of the topics we will explore concerning this topic include: The basics of predictive analysis. How to predict events that are going to happen in the future with big data and data mining. How to predict events that are going to happen in the future with the help of data analysis and statistics. A look at machine learning and how this process can help make predictions. How to avoid prediction traps, avoid bias, and make the best decisions with this analysis. Some of the top reasons to implement this kind of analysis in your business. The steps you can take to create your own predictive analysis model. And much, much more! Working on predictive analytics is going to be one of the best ways that your business can use the data you have to look more deeply inside, and sort through the different predictions you can make. Click the "add to cart" button to start your learning!

Data Preparation for Data Mining

Data Preparation for Data Mining Book
Author : Dorian Pyle
Publisher : Morgan Kaufmann
Release : 1999-04-05
ISBN : 9781558605299
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Preparation for Data Mining addresses an issue unfortunately ignored by most authorities on data mining: data preparation. Thanks largely to its perceived difficulty, data preparation has traditionally taken a backseat to the more alluring question of how best to extract meaningful knowledge. But without adequate preparation of your data, the return on the resources invested in mining is certain to be disappointing. Dorian Pyle corrects this imbalance. A twenty-five-year veteran of what has become the data mining industry, Pyle shares his own successful data preparation methodology, offering both a conceptual overview for managers and complete technical details for IT professionals. Apply his techniques and watch your mining efforts pay off-in the form of improved performance, reduced distortion, and more valuable results. On the enclosed CD-ROM, you'll find a suite of programs as C source code and compiled into a command-line-driven toolkit. This code illustrates how the author's techniques can be applied to arrive at an automated preparation solution that works for you. Also included are demonstration versions of three commercial products that help with data preparation, along with sample data with which you can practice and experiment. * Offers in-depth coverage of an essential but largely ignored subject. * Goes far beyond theory, leading you-step by step-through the author's own data preparation techniques. * Provides practical illustrations of the author's methodology using realistic sample data sets. * Includes algorithms you can apply directly to your own project, along with instructions for understanding when automation is possible and when greater intervention is required. * Explains how to identify and correct data problems that may be present in your application. * Prepares miners, helping them head into preparation with a better understanding of data sets and their limitations.

Predictive Analytics and Data Mining

Predictive Analytics and Data Mining Book
Author : Charles Elkan
Publisher : Unknown
Release : 2013
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Predictive Analytics and Data Mining book written by Charles Elkan, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Applied Predictive Analytics

Applied Predictive Analytics Book
Author : Dean Abbott
Publisher : John Wiley & Sons
Release : 2014-03-31
ISBN : 111872769X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.

The Essential Elements of Predictive Analytics and Data Mining

The Essential Elements of Predictive Analytics and Data Mining Book
Author : Keith McCormick
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download The Essential Elements of Predictive Analytics and Data Mining book written by Keith McCormick, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Real World Data Mining

Real World Data Mining Book
Author : Dursun Delen
Publisher : FT Press
Release : 2014-12-16
ISBN : 0133551113
Language : En, Es, Fr & De

GET BOOK

Book Description :

Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.