Skip to main content

Nucleation In Condensed Matter

Download Nucleation In Condensed Matter Full eBooks in PDF, EPUB, and kindle. Nucleation In Condensed Matter is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Nucleation in Condensed Matter

Nucleation in Condensed Matter Book
Author : Ken Kelton,Alan Lindsay Greer
Publisher : Elsevier
Release : 2010-03-19
ISBN : 0080912648
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In Nucleation in Condensed Matter, key theoretical models for nucleation are developed and experimental data are used to discuss their range of validity. A central aim of this book is to enable the reader, when faced with a phenomenon in which nucleation appears to play a role, to determine whether nucleation is indeed important and to develop a quantitative and predictive description of the nucleation behavior. The third section of the book examines nucleation processes in practical situations, ranging from solid state precipitation to nucleation in biological systems to nucleation in food and drink. Nucleation in Condensed Matter is a key reference for an advanced materials course in phase transformations. It is also an essential reference for researchers in the field. Unified treatment of key theories, experimental evaluations and case studies Complete derivation of key models Detailed discussion of experimental measurements Examples of nucleation in diverse systems

Nucleation in Condensed Matter

Nucleation in Condensed Matter Book
Author : K. F. Kelton,A. L. Greer
Publisher : Unknown
Release : 2010
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download Nucleation in Condensed Matter book written by K. F. Kelton,A. L. Greer, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Introduction to the Theory of Soft Matter

Introduction to the Theory of Soft Matter Book
Author : Jonathan V. Selinger
Publisher : Springer
Release : 2015-08-19
ISBN : 3319210548
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents the theory of soft matter to students at the advanced undergraduate or beginning graduate level. It provides a basic introduction to theoretical physics as applied to soft matter, explaining the concepts of symmetry, broken symmetry, and order parameters; phases and phase transitions; mean-field theory; and the mathematics of variational calculus and tensors. It is written in an informal, conversational style, which is accessible to students from a diverse range of backgrounds. The book begins with a simple “toy model” to demonstrate the physical significance of free energy. It then introduces two standard theories of phase transitions—the Ising model for ferromagnetism and van der Waals theory of gases and liquids—and uses them to illustrate principles of statistical mechanics. From those examples, it moves on to discuss order, disorder, and broken symmetry in many states of matter, and to explain the theoretical methods that are used to model the phenomena. It concludes with a chapter on liquid crystals, which brings together all of these physical and mathematical concepts. The book is accompanied online by a set of “interactive figures”—some allow readers to change parameters and see what happens to a graph, some allow readers to rotate a plot or other graphics in 3D, and some do both. These interactive figures help students to develop their intuition for the physical meaning of equations. This book will prepare advanced undergraduate or early graduate students to go into more advanced theoretical studies. It will also equip students going into experimental soft matter science to be fully conversant with the theoretical aspects and have effective collaborations with theorists.

Soft Matter Self Assembly

Soft Matter Self Assembly Book
Author : C.N. Likos,F. Sciortino,E. Zaccarelli
Publisher : IOS Press
Release : 2016-07-14
ISBN : 1614996628
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Self-assembly is one of the key concepts in contemporary soft condensed matter. It is an umbrella term which encompasses the various modes of spontaneous organization of micrometer-and submicrometer-sized particles into ordered structures of various degrees of complexity, yet it often relies on remarkably simple interactions and mechanisms. Self-assembly is one of the key principles used by nature to construct living matter, where it frequently takes place in a hierarchical fashion. This book contains the lectures from the Enrico Fermi summer school: Soft Matter Self-assembly, held in Varenna, Italy, in June and July 2015. The primary aim of the school was to cover the most exciting modern aspects of self-assembly in soft condensed matter physics, and to enable Ph.D. students and postdocs to engage with some of the most exciting and current topics in the physics of colloids through a series of mini-courses and seminars hosted by leading figures in the field. Subjects covered include: colloids with directional bonding; pathways of self-organization; self-assembly hydrodynamics; polymer structure and dynamics; liquid-crystal colloid dispersions; and self-organizing nanosystems. The proceedings also include two reprints from Reviews of Modern Physics, and will be of interest to both students and experts in the field.

Nucleation Theory

Nucleation Theory Book
Author : V.I. Kalikmanov
Publisher : Springer
Release : 2012-11-28
ISBN : 9048136431
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first order phase transitions, and examples such as the freezing of water are familiar in everyday life. The conditions at which the transformation takes place can sometimes vary. For example, the freezing point of water is not always 0°C, but the liquid can be supercooled considerably if it is pure enough and treated carefully. The reason for this phenomenon is nucleation. This monograph covers all major available routes of theoretical research of nucleation phenomena (phenomenological models, semi-phenomenological theories, density functional theories, microscopic and semi-microscopic approaches), with emphasis on the formation of liquid droplets from a metastable vapor. Also, it illustrates the application of these various approaches to experimentally relevant problems. In spite of the familiarity of the involved phenomena, it is still impossible to calculate nucleation accurately, as the properties and the kinetics of the daughter phase are insufficiently well known. Existing theories based upon classical nucleation theory have on the whole explained the trends in behavior correctly. However they often fail spectacularly to account for new data, in particular in the case of binary or, more generally, multi-component nucleation. The current challenge of this book is to go beyond such classical models and provide a more satisfactory theory by using density functional theory and microscopic computer simulations in order to describe the properties of small clusters. Also, semi-phenomenological models are proposed, which attempt to relate the properties of small clusters to known properties of the bulk phases. This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and post-graduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.

Condensed Matter

Condensed Matter Book
Author : M. P. Das
Publisher : Nova Publishers
Release : 2007
ISBN : 9781600210228
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Condensed matter is one of the most active fields of physics, with a stream of discoveries in areas from superfluidity and magnetism to the optical, electronic and mechanical properties of materials such as semiconductors, polymers and carbon nanotubes. It includes the study of well-characterised solid surfaces, interfaces and nanostructures as well as studies of molecular liquids (molten salts, ionic solutions, liquid metals and semiconductors) and soft matter systems (colloidal suspensions, polymers, surfactants, foams, liquid crystals, membranes, biomolecules etc) including glasses and biological aspects of soft matter. This book presents state-of-the-art research in this exciting field.

Advances in Contact Angle Wettability and Adhesion

Advances in Contact Angle  Wettability and Adhesion Book
Author : K. L. Mittal
Publisher : John Wiley & Sons
Release : 2013-08-16
ISBN : 111879561X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The topic of wettabilty is extremely important from both fundamental and applied aspects. The applications of wettability range from self-cleaning windows to micro- and nanofluidics. This book represents the cumulative wisdom of a contingent of world-class (researchers engaged in the domain of wettability. In the last few years there has been tremendous interest in the "Lotus Leaf Effect" and in understanding its mechanism and how to replicate this effect for myriad applications. The topics of superhydrophobicity, omniphobicity and superhydrophilicity are of much contemporary interest and these are covered in depth in this book.

Cohesive Properties of Semiconductors under Laser Irradiation

Cohesive Properties of Semiconductors under Laser Irradiation Book
Author : L.D. Laude
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 9400968906
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The impact of Materials Science in our environment has probably never been as massive and decisive as it is today. In every aspect of our lives, progress has never been so dependent on the techniques involved in producing ever more sophisticated materials in ever larger quantities, nor so demanding for technologists to imagine novel processes and circumvent difficulties, or take up new challenges. Every technique is based on a physical process which is put into practice and optimized. The better we know that process, the better the optimization, and more powerful the technique. Laser processing of materials is inscribed in that context. As soon as powerful coherent light sources were made available, it was realized that such intense sources of energy could be used to "heat, melt and crystallize" materials, i.e., to promote phase transitions in atomic systems. As early as 1964, attempts in that direction were made but received very little (if any) attention. Reasons for this lack of interest were several. For one thing, laser technology was not fully developed, so that the process offered poor reliability and no versatility. Also, improving the existing techniques was believed to be sufficient to meet the needs of the time, and there was no real motivation to explore new ways. Finally, and more important, the fundamentals of the physics behind the scenes were, and continue to be, way out of the runni~g stream.

Thermal analysis of Micro Nano and Non Crystalline Materials

Thermal analysis of Micro  Nano  and Non Crystalline Materials Book
Author : Jaroslav Šesták,Peter Simon
Publisher : Springer Science & Business Media
Release : 2012-10-28
ISBN : 9048131502
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics complements and adds to volume 8 Glassy, Amorphous and Nano-Crystalline Materials by providing a coherent and authoritative overview of cutting-edge themes in this field. In particular, the book focuses on reaction thermodynamics and kinetics applied to solid-state chemistry and thermal physics of various states of materials. Written by an international array of distinguished academics, the book deals with fundamental and historical aspects of phenomenological kinetics, equilibrium background of processes, crystal defects, non-stoichiometry and nano-crystallinity, reduced glass-transition temperatures and glass-forming coefficients, determination of the glass transition by DSC, the role of heat transfer and phase transition in DTA experiments, explanation of DTA/DSC methods used for the estimation of crystal nucleation, structural relaxation and viscosity behaviour in glass and associated relaxation kinetics, influence of preliminary nucleation and coupled phenomenological kinetics, nucleation on both the strongly curved surfaces and nano-particles, crystallization of glassy and amorphous materials including oxides, chalcogenides and metals, non-parametric and fractal description of kinetics, disorder and dimensionality in nano-crystalline diamond, thermal analysis of waste glass batches, amorphous inorganic polysialates and bioactivity of hydroxyl groups as well as reaction kinetics and unconventional glass formability of oxide superconductors. Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics is a valuable resource to advanced undergraduates, postgraduates, and researches working in the application fields of material thermodynamics, thermal analysis, thermophysical measurements, and calorimetry.

Physical Metallurgy

Physical Metallurgy Book
Author : David E. Laughlin,Kazuhiro Hono
Publisher : Newnes
Release : 2014-07-24
ISBN : 0444537716
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This fifth edition of the highly regarded family of titles that first published in 1965 is now a three-volume set and over 3,000 pages. All chapters have been revised and expanded, either by the fourth edition authors alone or jointly with new co-authors. Chapters have been added on the physical metallurgy of light alloys, the physical metallurgy of titanium alloys, atom probe field ion microscopy, computational metallurgy, and orientational imaging microscopy. The books incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included. Exhaustively synthesizes the pertinent, contemporary developments within physical metallurgy so scientists have authoritative information at their fingertips Replaces existing articles and monographs with a single, complete solution Enables metallurgists to predict changes and create novel alloys and processes

Condensed Matter Physics

Condensed Matter Physics Book
Author : Bal K. Agrawal,Hari Prakash (of Physics Dept., Allahabad University.)
Publisher : Alpha Science Int'l Ltd.
Release : 1999
ISBN : 9788173193231
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Contributed seminar papers.

Issues in Nuclear High Energy Plasma Particle and Condensed Matter Physics 2011 Edition

Issues in Nuclear  High Energy  Plasma  Particle  and Condensed Matter Physics  2011 Edition Book
Author : Anonim
Publisher : ScholarlyEditions
Release : 2012-01-09
ISBN : 1464963657
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics. The editors have built Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Energy Landscapes Inherent Structures and Condensed Matter Phenomena

Energy Landscapes  Inherent Structures  and Condensed Matter Phenomena Book
Author : Frank H. Stillinger
Publisher : Princeton University Press
Release : 2015-11-17
ISBN : 1400873975
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents an authoritative and in-depth treatment of potential energy landscape theory, a powerful analytical approach to describing the atomic and molecular interactions in condensed-matter phenomena. Drawing on the latest developments in the computational modeling of many-body systems, Frank Stillinger applies this approach to a diverse range of substances and systems, including crystals, liquids, glasses and other amorphous solids, polymers, and solvent-suspended biomolecules. Stillinger focuses on the topography of the multidimensional potential energy hypersurface created when a large number of atoms or molecules simultaneously interact with one another. He explains how the complex landscape topography separates uniquely into individual "basins," each containing a local potential energy minimum or "inherent structure," and he shows how to identify interbasin transition states—saddle points—that reside in shared basin boundaries. Stillinger describes how inherent structures and their basins can be classified and enumerated by depth, curvatures, and other attributes, and how those enumerations lead logically from vastly complicated multidimensional landscapes to properties observed in the real three-dimensional world. Essential for practitioners and students across a variety of fields, the book illustrates how this approach applies equally to systems whose nuclear motions are intrinsically quantum mechanical or classical, and provides novel strategies for numerical simulation computations directed toward diverse condensed-matter systems.

Shock Waves in Condensed Matter 1983

Shock Waves in Condensed Matter   1983 Book
Author : J.R. Asay,R.A. Graham,G.K. Struab
Publisher : Elsevier
Release : 2012-12-02
ISBN : 0444600175
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Shock Waves in Condensed Matter – 1983 covers the proceedings of the American Physical Society Topical Conference, held in Santa Fe, New Mexico on July 18-21, 1983. The book focuses on the response of matter to dynamic high pressure and temperature. The selection first elaborates on the review of theoretical calculations of phase transitions and comparisons with experimental results; theoretical and experimental studies of shock-compressed benzene and polybutene; and theory of the iron equation of state and melting curve to very high pressures. The text then ponders on nonhydrostatic effects in stress-wave induced phase transformation of calcite; Bauschinger effect model suitable for use in large computer codes; and strain rate sensitivity prediction for porous bed compaction. The manuscript takes a look at flaw nucleation and energetics of dynamic fragmentation, shock loading behavior of fused quartz, and aluminum damage simulation in high-velocity impact. Shock wave diagnostics by time-resolved infrared radiometry and non-linear Raman spectroscopy; Raman scattering temperature measurement behind a shock wave; and experiments and simulation on laser-driven shock wave evolution in aluminum targets are also discussed. The selection is a dependable reference for scientists and readers interested in the response of matter when exposed to dynamic high pressure and temperature.

Materials Kinetics

Materials Kinetics Book
Author : John C. Mauro
Publisher : Elsevier
Release : 2020-11-22
ISBN : 0128242167
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick’s laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials Provides a seamless connection between thermodynamics and kinetics Includes practical exercises that reinforce key concepts at the end of each chapter

Shock Wave Phenomena and the Properties of Condensed Matter

Shock Wave Phenomena and the Properties of Condensed Matter Book
Author : Gennady I. Kanel,Sergey V. Razorenov,Vladimir E. Fortov
Publisher : Springer Science & Business Media
Release : 2013-06-29
ISBN : 1475742827
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

One of the main goals of investigations of shock-wave phenomena in condensed matter is to develop methods for predicting effects of explosions, high-velocity collisions, and other kinds of intense dynamic loading of materials and structures. Based on the results of international research conducted over the past 30 years, this book is addressed not only to experts in shock-wave physics, but also to interested representatives from adjacent fields of activity and to students who seek an introduction to the current issues.

Computer Simulation Studies in Condensed Matter Physics III

Computer Simulation Studies in Condensed Matter Physics III Book
Author : David P. Landau,K.K. Mon,Heinz-Bernd Schüttler
Publisher : Springer Science & Business Media
Release : 2012-12-06
ISBN : 3642763820
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The contribution of computer simulation studies to our understanding of the prop erties of a wide range of condensed matter systems is now weIl established. The Center for Simulational Physics of the University of Georgia has been hosting a series of annual workshops with the intent of bringing together experienced prac titioners in the field, as weIl as relative newcomers, to provide a forum for the exchange of ideas and recent results. This year's workshop, the third in the series, was held February 12-16, 1990. These proceedings are arecord of the workshop and are published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first contains invited pa pers dealing with simulational studies of classical systems and also includes an introduction to some new simulation techniques. Aseparate section is devoted to invited papers on quantum systems, including new results for strongly correlated electron and quantum spin models believed to be important for the description of high-Tc superconductors. The third part consists of a single invited paper, which presents a comprehensive treatment of issues associated with high perfor mance computing, including differences in architectures and a discussion of access strategies. The contributed papers constitute the final part.

Soft Condensed Matter

Soft Condensed Matter Book
Author : R. A. L. Jones,Richard A.L. Jones,R Jones, Ph.
Publisher : Oxford University Press
Release : 2002-06-20
ISBN : 9780198505891
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This text offers an introduction to the properties and behaviour of soft matter. It begins with a treatment of the underlying principles, then discusses how the properties of certain substances and systems are treated within this framework.

Handbook of Software Solutions for ICME

Handbook of Software Solutions for ICME Book
Author : Georg J. Schmitz,Ulrich Prahl
Publisher : John Wiley & Sons
Release : 2016-10-31
ISBN : 3527693580
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

As one of the results of an ambitious project, this handbook provides a well-structured directory of globally available software tools in the area of Integrated Computational Materials Engineering (ICME). The compilation covers models, software tools, and numerical methods allowing describing electronic, atomistic, and mesoscopic phenomena, which in their combination determine the microstructure and the properties of materials. It reaches out to simulations of component manufacture comprising primary shaping, forming, joining, coating, heat treatment, and machining processes. Models and tools addressing the in-service behavior like fatigue, corrosion, and eventually recycling complete the compilation. An introductory overview is provided for each of these different modelling areas highlighting the relevant phenomena and also discussing the current state for the different simulation approaches. A must-have for researchers, application engineers, and simulation software providers seeking a holistic overview about the current state of the art in a huge variety of modelling topics. This handbook equally serves as a reference manual for academic and commercial software developers and providers, for industrial users of simulation software, and for decision makers seeking to optimize their production by simulations. In view of its sound introductions into the different fields of materials physics, materials chemistry, materials engineering and materials processing it also serves as a tutorial for students in the emerging discipline of ICME, which requires a broad view on things and at least a basic education in adjacent fields.

Dynamic Magma Evolution

Dynamic Magma Evolution Book
Author : Francesco Vetere
Publisher : John Wiley & Sons
Release : 2021-01-07
ISBN : 1119521130
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Explores the complex physico-chemical processes involved in active volcanism and dynamic magmatism Understanding the magmatic processes responsible for the chemical and textural signatures of volcanic products and igneous rocks is crucial for monitoring, forecasting, and mitigating the impacts of volcanic activity. Dynamic Magma Evolution is a compilation of recent geochemical, petrological, physical, and thermodynamic studies. It combines field research, experimental results, theoretical approaches, unconventional and novel techniques, and computational modeling to present the latest developments in the field. Volume highlights include: Crystallization and degassing processes in magmatic environments Bubble and mineral nucleation and growth induced by cooling and decompression Kinetic processes during magma ascent to the surface Magma mixing, mingling, and recharge dynamics Geo-speedometer measurement of volcanic events Changes in magma rheology induced by mineral and volatile content The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.