Skip to main content

Multiscale Biomechanics

In Order to Read Online or Download Multiscale Biomechanics Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems Book
Author : Georg-Peter Ostermeyer,Valentin L. Popov,Evgeny V. Shilko,Olga S. Vasiljeva
Publisher : Springer
Release : 2020-11-24
ISBN : 9783030601232
Language : En, Es, Fr & De

GET BOOK

Book Description :

This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.

Multiscale Biomechanics

Multiscale Biomechanics Book
Author : Jean-Francois Ganghoffer
Publisher : Elsevier
Release : 2018-02-03
ISBN : 0081021151
Language : En, Es, Fr & De

GET BOOK

Book Description :

Multiscale Biomechanics provides new insights on multiscale static and dynamic behavior of both soft and hard biological tissues, including bone, the intervertebral disk, biological membranes and tendons. The physiological aspects of bones and biological membranes are introduced, along with micromechanical models used to compute mechanical response. A modern account of continuum mechanics of growth and remodeling, generalized continuum models to capture internal lengths scales, and dedicated homogenization methods are provided to help the reader with the necessary theoretical foundations. Topics discussed include multiscale methods for fibrous media based on discrete homogenization, generalized continua constitutive models for bone, and a presentation of recent theoretical and numerical advances. In addition, a refresher on continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods is given in separate chapters. Numerical aspects are treated in detail, and simulations are presented to illustrate models. This book is intended for graduate students and researchers in biomechanics interested in the latest research developments, as well as those who wish to gain insight into the field of biomechanics. Provides a clear exposition of multiscale methods for fibrous media based on discrete homogenization and the consideration of generalized continua constitutive models for bone Presents recent theoretical and numerical advances for bone remodeling and growth Includes the necessary theoretical background that is exposed in a clear and self-contained manner Covers continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems Book
Author : Georg-Peter Ostermeyer
Publisher : Springer Nature
Release : 2021-07-28
ISBN : 3030601242
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Multiscale Biomechanics and Tribology of Inorganic and Organic Systems book written by Georg-Peter Ostermeyer, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology Book
Author : Suvranu De,Wonmuk Hwang,Ellen Kuhl
Publisher : Springer
Release : 2014-10-10
ISBN : 1447165993
Language : En, Es, Fr & De

GET BOOK

Book Description :

Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

8th International Workshop Multiscale Biomechanics and Tribology of Inorganic and Organic Systems 1 5 October 2019 Tomsk Russia

8th International Workshop  Multiscale Biomechanics and Tribology of Inorganic and Organic Systems   1 5 October 2019  Tomsk  Russia Book
Author : Anonim
Publisher : Unknown
Release : 2019
ISBN : 9785946218412
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download 8th International Workshop Multiscale Biomechanics and Tribology of Inorganic and Organic Systems 1 5 October 2019 Tomsk Russia book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Multiscale Computer Modeling in Biomechanics and Biomedical Engineering Book
Author : Amit Gefen
Publisher : Springer Science & Business Media
Release : 2014-07-08
ISBN : 3642364829
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

The Multiscale Biomechanics and Mechanochemistry of the Extracellular Matrix Protein Fibres Collagen Elastin

The Multiscale Biomechanics and Mechanochemistry of the Extracellular Matrix Protein Fibres  Collagen   Elastin Book
Author : Ryan Stuart Edginton
Publisher : Unknown
Release : 2018
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download The Multiscale Biomechanics and Mechanochemistry of the Extracellular Matrix Protein Fibres Collagen Elastin book written by Ryan Stuart Edginton, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology Book
Author : Suvranu De,Wonmuk Hwang,Ellen Kuhl
Publisher : Unknown
Release : 2014-10-31
ISBN : 9781447166009
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Multiscale Modeling in Biomechanics and Mechanobiology book written by Suvranu De,Wonmuk Hwang,Ellen Kuhl, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Biomechanics

Biomechanics Book
Author : Manuel Doblare,Jose Merodio
Publisher : EOLSS Publications
Release : 2015-12-30
ISBN : 178021023X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Biomechanics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The enormous progress in the field of health sciences that has been achieved in the 19th and 20th centuries would have not been possible without the enabling interaction and support of sophisticated technologies that progressively gave rise to a new interdisciplinary field named alternatively as bioengineering or biomedical engineering. Although both terms are synonymous, the latter is less general since it limits the field of application to medicine and clinical practice, while the former covers semantically the whole field of interaction between life sciences and engineering, thus including also applications in biology, biochemistry or the many '-omics'. We use in this book the second, with more general meaning, recalling the very important relation between fundamental science and engineering. And this also recognizes the tremendous economic and social impacts of direct application of engineering in medicine that maintains the health industry as one with the fastest growth in the world economy. Biomechanics, in particular, aims to explain and predict the mechanics of the different components of living beings, from molecules to organisms as well as to design, manufacture and use of any artificial device that interacts with the mechanics of living beings. It helps, therefore, to understand how living systems move, to characterize the interaction between forces and deformation along all spatial scales, to analyze the interaction between structural behavior and microstructure, with the very important particularity of dealing with adaptive systems, able to adapt their internal structure, size and geometry to the particular mechanical environment in which they develop their activity, to understand and predict alterations in the mechanical function due to injuries, diseases or pathologies and, finally, to propose methods of artificial intervention for functional diagnosis or recovery. Biomechanics is today a very highly interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, chemists, material specialists, biologists, medical doctors, etc. They work in many different topics from a purely scientific objective to industrial applications and with an increasing arsenal of sophisticated modeling and experimental tools but always with the final objectives of better understanding the fundamentals of life and improve the quality of life of human beings. One purpose in this volume has been to present an overview of some of these many possible subjects in a self-contained way for a general audience. This volume is aimed at the following major target audiences: University and College Students, Educators, Professional Practitioners, and Research Personnel.

Structure and Function of the Extracellular Matrix

Structure and Function of the Extracellular Matrix Book
Author : Bela Suki
Publisher : Academic Press
Release : 2021-11-01
ISBN : 0128226056
Language : En, Es, Fr & De

GET BOOK

Book Description :

Structure and Function of the Extracellular Matrix: A Multiscale Quantitative Approach introduces biomechanics and biophysics with applications to understand the biological function of the extracellular matrix in health and disease. A general multiscale approach is followed by investigating behavior from the scale of single molecules, through fibrils and fibers, to tissues of various organ systems. Through mathematical models and structural information, quantitative description of the extracellular matrix function is derived with tissue specific details. The book introduces the properties and organization of extracellular matrix components and quantitative models of the matrix, and guides the reader through predicting functional properties. This book integrates evolutionary biology with multiscale structure to quantitatively understand the function of the extracellular matrix. This approach allows a fresh look into normal functioning as well as the pathological alterations of the extracellular matrix. Professor Suki’s book is written to be useful to undergraduates, graduate students, and researchers interested in the quantitative aspects of the extracellular matrix. Researchers working in mechanotransduction, respiratory and cardiovascular mechanics, and multiscale biomechanics of tendon, cartilage, skin, and bone may also be interested in this book. Examines the evolutionary origins and consequences of the extracellular matrix Delivers the first book to quantitatively treat the extracellular matrix as a multiscale system Presents problems and a set of computational laboratory projects in various chapters to aid teaching and learning Provides an introduction to the properties and organization of the extracellular matrix components

Computational Modeling in Biomechanics

Computational Modeling in Biomechanics Book
Author : Suvranu De,Farshid Guilak,Mohammad Mofrad
Publisher : Springer Science & Business Media
Release : 2010-03-10
ISBN : 9789048135752
Language : En, Es, Fr & De

GET BOOK

Book Description :

Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.

Computer Models in Biomechanics

Computer Models in Biomechanics Book
Author : Gerhard Holzapfel,Ellen Kuhl
Publisher : Springer Science & Business Media
Release : 2012-10-17
ISBN : 9400754639
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling following aortic coarctation, patient-specific surgery planning for the Fontan procedure - Multiphasic Models: solutes in hydrated biological tissues, reformulation of mixture theory-based poroelasticity for interstitial tissue growth, tumor therapies of brain tissue, remodeling of microcirculation in liver lobes, reactions, mass transport and mechanics of tumor growth, water transport modeling in the brain, crack modeling of swelling porous media - Morphogenesis, Biological Tissues and Organs: mechanisms of brain morphogenesis, micromechanical modeling of anterior cruciate ligaments, mechanical characterization of the human liver, in vivo validation of predictive models for bone remodeling and mechanobiology, bridging scales in respiratory mechanics

Biomechanics of Cells and Tissues

Biomechanics of Cells and Tissues Book
Author : Paola Lecca
Publisher : Springer Science & Business Media
Release : 2013-01-18
ISBN : 9400758901
Language : En, Es, Fr & De

GET BOOK

Book Description :

The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesión processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.

Computational Biomechanics

Computational Biomechanics Book
Author : Masao Tanaka,Shigeo Wada,Masanori Nakamura
Publisher : Springer Science & Business Media
Release : 2012-03-22
ISBN : 4431540733
Language : En, Es, Fr & De

GET BOOK

Book Description :

Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.

Biomechanics in Oncology

Biomechanics in Oncology Book
Author : Cheng Dong,Nastaran Zahir,Konstantinos Konstantopoulos
Publisher : Springer
Release : 2018-10-27
ISBN : 3319952943
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book covers multi-scale biomechanics for oncology, ranging from cells and tissues to whole organ. Topics covered include, but not limited to, biomaterials in mechano-oncology, non-invasive imaging techniques, mechanical models of cell migration, cancer cell mechanics, and platelet-based drug delivery for cancer applications. This is an ideal book for graduate students, biomedical engineers, and researchers in the field of mechanobiology and oncology. This book also: Describes how mechanical properties of cancer cells, the extracellular matrix, tumor microenvironment and immuno-editing, and fluid flow dynamics contribute to tumor progression and the metastatic process Provides the latest research on non-invasive imaging, including traction force microscopy and brillouin confocal microscopy Includes insight into NCIs’ role in supporting biomechanics in oncology research Details how biomaterials in mechano-oncology can be used as a means to tune materials to study cancer

Composition dependent Mechanisms of Multiscale Tendon Mechanics

Composition dependent Mechanisms of Multiscale Tendon Mechanics Book
Author : Fei Fang (Materials scientist)
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Tendons serve as an integral part of the musculoskeletal system by transferring loads from muscle to bone and providing joint mobility and stability. From the physiologically-loading perspective, while progress has been made in evaluating mechanical behavior of different types of tendons in tension, further work is needed to relate tendon mechanics to compositional and microstructural properties, particularly under non-tensile loading modalities (i.e., shear, compression). This information is vital to explore mechanisms of how mechanical signals lead to changes in tendon structure and composition to enable these tissues to function properly, including in in vivo multiaxial loading conditions. From the structural perspective, tendon exhibits a hierarchical organization as collagen is bundled into fibrils, fibers, fascicles, and finally full tissue. Within this hierarchy, linking components are believed to act as connections to maintain mechanical integrity. Three linking components have been proposed, namely elastic fibers, proteoglycans, and collagen crosslinks, however conclusions about their specific mechanical roles, assessed using experimental and computational approaches, are inconsistent. In addition, it remains unknown whether/how these linking components regulate tendon microscale behavior (i.e., at the level of cells) and mechanical signal transfer across length scales.Therefore, this study aimed to (1) develop a protocol that combined a biomechanical test device with two-photon microscopy to measure tendon mechanical strength and multiscale deformation; (2) apply this experimental approach to evaluate region-dependent biomechanics of tendons and related physical mechanisms governing their microscale behavior; (3) determine the role of proteoglycans and elastic fibers in tendon multiscale mechanical behavior using enzyme-treated tendons; and (4) elucidate the contribution of collagen crosslinks to tendon mechanics using in vivo treatment and in vitro culture. We found that different regions of bovine flexor tendon exhibited distinct elasticity, but not viscosity, when subjected to shear and compression, and that fiber sliding and reorganization were the primary modes of microscale deformation. Elastic fibers contributed to supraspinatus tendon (SST) mechanical strength in shear, while proteoglycans appeared to not contribute to SST multiscale biomechanics. Rat SST with decreased collagen crosslink density showed inferior mechanical properties, demonstrating the role of collagen crosslinks on tendon mechanical behavior. Taken together, these results have illustrated tendon composition-mechanics relationships by evaluating mechanical contribution of specific linking components at different length scales. In addition, this work provides insight into mechanical consequences that may accompany extracellular matrix changes during tissue injury/degeneration, and as well provides useful data to aid the design of biomimetic engineered tissues with appropriate structure and composition.

Cell and Matrix Mechanics

Cell and Matrix Mechanics Book
Author : Roland Kaunas,Assaf Zemel
Publisher : CRC Press
Release : 2014-10-23
ISBN : 1466553812
Language : En, Es, Fr & De

GET BOOK

Book Description :

Explores a Range of Multiscale Biomechanics/Mechanobiology Concepts Cell and Matrix Mechanics presents cutting-edge research at the molecular, cellular, and tissue levels in the field of cell mechanics. This book involves key experts in the field, and covers crucial areas of cell and tissue mechanics, with an emphasis on the roles of mechanical forces in cell–matrix interactions. Providing material in each chapter that builds on the previous chapters, it effectively integrates length scales and contains, for each length scale, key experimental observations and corresponding quantitative theoretical models. Summarizes the Three Hierarchical Levels of Cell Mechanics The book contains 14 chapters and is organized into three sections. The first section focuses on the molecular level, the second section details mechanics at the cellular level, and the third section explores cellular mechanics at the tissue level. The authors offer a thorough description of the roles of mechanical forces in cell and tissue biology, and include specific examples. They incorporate descriptions of associated theoretical models, and provide the data and modeling framework needed for a multi-scale analysis. In addition, they highlight the pioneering studies in cell–matrix mechanics by Albert K. Harris. The topics covered include: The passive and active mechanical properties of cytoskeletal polymers and associated motor proteins along with the behavior of polymer networks The mechanical properties of the cell membrane, with an emphasis on membrane protein activation caused by membrane forces The hierarchical organization of collagen fibrils, revealing that a delicate balance exists between specific and nonspecific interactions to result in a structure with semicrystalline order as well as loose associations The roles of matrix mechanical properties on cell adhesion and function along with different mechanical mechanisms of cell–cell interactions The effects of mechanical loading on cell cytoskeletal remodeling, summarizing various modeling approaches that explain possible mechanisms regulating the alignment of actin stress fibers in response to stretching The mechanical testing of cell-populated collagen matrices, along with theory relating the passive and active mechanical properties of the engineered tissues Cell migration behavior in 3-D matrices and in collective cell motility The role of mechanics in cartilage development The roles of both cellular and external forces on tissue morphogenesis The roles of mechanical forces on tumor growth and cancer metastasis Cell and Matrix Mechanics succinctly and systematically explains the roles of mechanical forces in cell–matrix biology. Practitioners and researchers in engineering and physics, as well as graduate students in biomedical engineering and mechanical engineering related to mechanobiology, can benefit from this work.

Discrete and Continuum Models for Complex Metamaterials

Discrete and Continuum Models for Complex Metamaterials Book
Author : Francesco dell'Isola,David J. Steigmann
Publisher : Cambridge University Press
Release : 2020-03-12
ISBN : 1108850189
Language : En, Es, Fr & De

GET BOOK

Book Description :

Bringing together contributions on a diverse range of topics, this text explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Providing a comprehensive bibliography and historical review of the field, it covers mechanical, acoustic and pantographic metamaterials, discusses Naive Model Theory and Lagrangian discrete models, and their applications, and presents methods for pantographic structures and variational methods for multidisciplinary modeling and computation. The relationship between discrete and continuous models is discussed from both mathematical and engineering viewpoints, making the text ideal for those interested in the foundation of mechanics and computational applications, and innovative viewpoints on the use of discrete systems to model metamaterials are presented for those who want to go deeper into the field. An ideal text for graduate students and researchers interested in continuum approaches to the study of modern materials, in mechanical engineering, civil engineering, applied mathematics, physics, and materials science.