Skip to main content

Modeling Dynamics And Control Of Electrified Vehicles

Download Modeling Dynamics And Control Of Electrified Vehicles Full eBooks in PDF, EPUB, and kindle. Modeling Dynamics And Control Of Electrified Vehicles is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Modeling Dynamics and Control of Electrified Vehicles

Modeling  Dynamics  and Control of Electrified Vehicles Book
Author : Haiping Du,Dongpu Cao,Hui Zhang
Publisher : Woodhead Publishing
Release : 2017-10-19
ISBN : 0128131098
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Modelling, Dynamics and Control of Electrified Vehicles provides a systematic overview of EV-related key components, including batteries, electric motors, ultracapacitors and system-level approaches, such as energy management systems, multi-source energy optimization, transmission design and control, braking system control and vehicle dynamics control. In addition, the book covers selected advanced topics, including Smart Grid and connected vehicles. This book shows how EV work, how to design them, how to save energy with them, and how to maintain their safety. The book aims to be an all-in-one reference for readers who are interested in EVs, or those trying to understand its state-of-the-art technologies and future trends. Offers a comprehensive knowledge of the multidisciplinary research related to EVs and a system-level understanding of technologies Provides the state-of-the-art technologies and future trends Covers the fundamentals of EVs and their methodologies Written by successful researchers that show the deep understanding of EVs

Modeling and Dynamics Control for Distributed Drive Electric Vehicles

Modeling and Dynamics Control for Distributed Drive Electric Vehicles Book
Author : Xudong Zhang
Publisher : Springer Vieweg
Release : 2021-02-11
ISBN : 9783658322120
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Due to the improvements on electric motors and motor control technology, alternative vehicle power system layouts have been considered. One of the latest is known as distributed drive electric vehicles (DDEVs), which consist of four motors that are integrated into each drive and can be independently controllable. Such an innovative design provides packaging advantages, including short transmission chain, fast and accurate torque response, and so on. Based on these advantages and features, this book takes stability and energy-saving as cut-in points, and conducts investigations from the aspects of Vehicle State Estimation, Direct Yaw Moment Control (DYC), Control Allocation (CA). Moreover, lots of advanced algorithms, such as general regression neural network, adaptive sliding mode control-based optimization, as well as genetic algorithms, are applied for a better control performance.

Vehicle Tire Road Dynamics

Vehicle Tire Road Dynamics Book
Author : Tan Li
Publisher : Elsevier
Release : 2022-11-24
ISBN : 0323906915
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Vehicle/Tire/Road Dynamics: Handling, Ride, and NVH presents the connection between NVH and conventional vehicle dynamics where both tire and road play a key role. In this book, there is a chapter for handling dynamics that provides an introduction to ride dynamics and a chapter for ride dynamics that provides an introduction to NVH, presenting better coherence and synergy between these major areas of vehicle/tire dynamics. Accompanying the fundamental theories, case studies are given to facilitate comprehension. In addition to the experimental implementations, the state-of-the-art approaches to simulating vehicle/tire dynamics are presented from the viewpoint of both industry and academia. This new book bridges the gap for experts in tire or pavement NVH (also tire-pavement interaction noise) and those who are experts in vehicle dynamics. Conventional vehicle dynamics (e.g., handling/braking/cornering) is focused on low-frequency performance while NVH (noise/vibration/harshness) is focused on high-frequency performance. There is also another area called "ride" (comfort/stability) which focuses on mid-frequency. Presents a closed loop system for vehicle dynamics, covering handling, riden and NVH. Provides insights into how intelligent tires will enhance autonomous vehicle control and optimize multiple performances, especially for electric vehicles. Demonstrates how pavement characteristics could greatly influence vehicle handling/ride/NVH and improve/balance these performances.

Electric Systems for Transportation

Electric Systems for Transportation Book
Author : Maria Carmen Falvo,Alessandro Ruvio
Publisher : MDPI
Release : 2021-09-02
ISBN : 3036504885
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.

Modeling and Dynamics Control for Distributed Drive Electric Vehicles

Modeling and Dynamics Control for Distributed Drive Electric Vehicles Book
Author : Xudong Zhang
Publisher : Springer Nature
Release : 2021-01-08
ISBN : 3658322136
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Due to the improvements on electric motors and motor control technology, alternative vehicle power system layouts have been considered. One of the latest is known as distributed drive electric vehicles (DDEVs), which consist of four motors that are integrated into each drive and can be independently controllable. Such an innovative design provides packaging advantages, including short transmission chain, fast and accurate torque response, and so on. Based on these advantages and features, this book takes stability and energy-saving as cut-in points, and conducts investigations from the aspects of Vehicle State Estimation, Direct Yaw Moment Control (DYC), Control Allocation (CA). Moreover, lots of advanced algorithms, such as general regression neural network, adaptive sliding mode control-based optimization, as well as genetic algorithms, are applied for a better control performance.

Cyber Physical Vehicle Systems

Cyber Physical Vehicle Systems Book
Author : Chen Lv,Yang Xing,Junzhi Zhang,Dongpu Cao
Publisher : Springer Nature
Release : 2022-06-01
ISBN : 3031015045
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.

Advances in Dynamics of Vehicles on Roads and Tracks II

Advances in Dynamics of Vehicles on Roads and Tracks II Book
Author : Anna Orlova,David Cole
Publisher : Springer Nature
Release : 2022-08-08
ISBN : 3031073053
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a snapshot of the latest research and developments in road and railway vehicle dynamics. Gathering peer-reviewed contributions to the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD), held online on August 17–19, 2021, from Saint Petersburg, Russia, it offers extensive information for both researchers and professionals in the field of ground vehicle dynamics, control and design. It covers cutting-edge methods and solutions for solving ground vehicle system dynamics-related problems, concerning control and monitoring, performance, safety and braking of road and rail vehicles, including electric and autonomous ones. Further, it reports on significant advances in vehicle design, and important applications to improve ride comfort. Overall, the book provides academics and professional with a timely reference guide on theories and methods to understand, analyze and improve vehicle stability and dynamics in a broad range of different operating conditions. Chapter "Experimental Validation of a Semi-physical Modelling Approach of the Influence of Tyre Rotation on the Vertical Tyre Force Transmission and Tyre Kinematics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Electric Vehicle Integration via Smart Charging

Electric Vehicle Integration via Smart Charging Book
Author : Vahid Vahidinasab,Behnam Mohammadi-Ivatloo
Publisher : Springer Nature
Release : 2022-10-11
ISBN : 3031059093
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book brings together important new contributions covering electric vehicle smart charging (EVSC) from a multidisciplinary group of global experts, providing a comprehensive look at EVSC and its role in meeting long-term goals for decarbonization of electricity generation and transportation. This multidisciplinary reference presents practical aspects and approaches to the technology, along with evidence from its applications to real-world energy systems. Electric Vehicle Integration via Smart Charging is suitable for practitioners and industry stakeholders working on EVSC, as well as researchers and developers from different branches of engineering, energy, transportation, economic, and operation research fields.

Modeling and Dynamics Control for Distributed Drive Electric Vehicles

Modeling and Dynamics Control for Distributed Drive Electric Vehicles Book
Author : Xudong Zhang
Publisher : Unknown
Release : 2021
ISBN : 9783658322144
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Due to the improvements on electric motors and motor control technology, alternative vehicle power system layouts have been considered. One of the latest is known as distributed drive electric vehicles (DDEVs), which consist of four motors that are integrated into each drive and can be independently controllable. Such an innovative design provides packaging advantages, including short transmission chain, fast and accurate torque response, and so on. Based on these advantages and features, this book takes stability and energy-saving as cut-in points, and conducts investigations from the aspects of Vehicle State Estimation, Direct Yaw Moment Control (DYC), Control Allocation (CA). Moreover, lots of advanced algorithms, such as general regression neural network, adaptive sliding mode control-based optimization, as well as genetic algorithms, are applied for a better control performance. About the author Xudong Zhang received the M.S. degree in mechanical engineering from Beijing Institute of Technology, China, and the Ph.D. degree in mechanical engineering from Technical University of Berlin, Germany. Since 2017, he has joined in Beijing Institute of Technology as an Associate Research Fellow. His main research interests include vehicle dynamics control, autonomous vehicles, and power management of hybrid electric vehicles. .

Handbook of Research on Modeling Analysis and Control of Complex Systems

Handbook of Research on Modeling  Analysis  and Control of Complex Systems Book
Author : Azar, Ahmad Taher,Kamal, Nashwa Ahmad
Publisher : IGI Global
Release : 2020-12-05
ISBN : 1799857905
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The current literature on dynamic systems is quite comprehensive, and system theory’s mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.

iHorizon Enabled Energy Management for Electrified Vehicles

iHorizon Enabled Energy Management for Electrified Vehicles Book
Author : Clara Marina Martinez,Dongpu Cao
Publisher : Butterworth-Heinemann
Release : 2018-09-11
ISBN : 0128150114
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

iHorizon-Enabled Energy Management for Electrified Vehicles proposes a realistic solution that assumes only scarce information is available prior to the start of a journey and that limited computational capability can be allocated for energy management. This type of framework exploits the available resources and closely emulates optimal results that are generated with an offline global optimal algorithm. In addition, the authors consider the present and future of the automotive industry and the move towards increasing levels of automation. Driver vehicle-infrastructure is integrated to address the high level of interdependence of hybrid powertrains and to comply with connected vehicle infrastructure. This book targets upper-division undergraduate students and graduate students interested in control applied to the automotive sector, including electrified powertrains, ADAS features, and vehicle automation. Addresses the level of integration of electrified powertrains Presents the state-of-the-art of electrified vehicle energy control Offers a novel concept able to perform dynamic speed profile and energy demand prediction

The Dynamics of Vehicles on Roads and Tracks

The Dynamics of Vehicles on Roads and Tracks Book
Author : Martin Rosenberger,Manfred Plöchl,Klaus Six,Johannes Edelmann
Publisher : CRC Press
Release : 2016-03-30
ISBN : 1498777023
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The IAVSD Symposium is the leading international conference in the field of ground vehicle dynamics, bringing together scientists and engineers from academia and industry. The biennial IAVSD symposia have been held in internationally renowned locations. In 2015 the 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD) was held in Graz, Austria, from 17th to 21st of August 2015. The symposium was hosted by VIRTUAL VEHICLE Research Center, in cooperation with the Graz and Vienna Universities of Technology, and the industrial partners AVL, Magna Steyr, and Siemens. 170 papers (oral and poster presentations) were presented at the symposium and the papers are now published in these proceedings. The papers review the latest research developments and practical applications in highly relevant areas of vehicle dynamics on roads and tracks, and may serve as a reference for researchers and engineers active in the field of vehicle system dynamics.

Automotive Applications of Hardware in the Loop HIL Simulation

Automotive Applications of Hardware in the Loop  HIL  Simulation Book
Author : Adit Joshi
Publisher : SAE International
Release : 2019-08-13
ISBN : 1468600036
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Automotive Applications of Hardware-in-the-Loop (HIL) Simulation shines a light on HIL simulation testing methodology commonly used in the automotive industry for conventional, electrification and autonomy applications and can serve as an introductory resource for college students looking to join the automotive industry or experienced technical professionals who need a deeper understanding on what is HIL simulation, what are its benefits and how can it be used in their respective organizations.

Design Modeling and Optimization of Hybridized Automated Manual Transmission for Electrified Vehicles

Design  Modeling and Optimization of Hybridized Automated Manual Transmission for Electrified Vehicles Book
Author : Guang Wu
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This research systematically compares various electrified vehicles based upon electrification levels and powertrain configurations. A series of novel hybrid electric powertrain systems based on the newly proposed Hybridized Automated Manual Transmission (HAMT) concept are introduced. One representative hybrid powertrain system is selected to illustrate their operation principle. The new HAMT-based hybrid powertrain system overcomes the bottleneck problem of mainstream power-split hybrid systems with relatively low torque capacity and the constraint for utility vehicle electrification, and presents advantages over other hybrid powertrain systems in efficiency and costs. In addition, the new hybrid powertrain system can deliver continuous output torque by filling torque hole during gearshift, through coordinated control of engine, motor, and transmission, improving the driveability of regular Automated Manual Transmission (AMT), whose applications have been hampered by torque hole over the past years. The proposed HAMT-based hybrid systems with improved torque capacity, efficiency, costs, and driveability come with a compact design and more flexible operation through the amount of gearwheels equivalent to a 5-speed AMT to achieve 8 variable gear ratios for the Hybrid Electric Vehicle (HEV) mode and Electric Vehicle (EV) mode operations of a Plug-in Hybrid Electric Vehicle (PHEV). Model-based optimization, dynamics analysis, and powertrain control strategies have been introduced for a PHEV with a representative 8-speed HAMT. Vehicle simulations have been made to study and verify the capability and advantages of the new electrified powertrain system. Firstly, the operation principles of various HAMTs are discussed through detailed power flows at each gear. The fundamental principles of typical HAMT variations are explained using a new power-flow triangle with three ports. Based on the concept of Torque Gap Filler (TGF), a set of HAMT system designs have been introduced and closely studied to provide continuous and stable output torque. The selected hybrid powertrain system equipped with a representative HAMT system supports both HEV mode and EV mode with eight variable gear ratios for each mode. Among the eight forward gear ratios, six are independent and two are dependent on the other gears. Combinations of dog clutches at all gears are designed to eliminate torque holes. Gear ratios and gearshift schedule of the 8-speed HAMT are designed to support the new design. Torque paths at each gear are illustrated and transient scenarios including gearshifts and mode transitions are investigated. The gear ratio of each gear is determined by considering the unique clutch combination of this HAMT, using the classical gear ratio design method - Progressive Ratio Steps. Due to the broader high efficiency operation region of electric motors, a model-based optimization method is used to determine the two gear ratios for the EV mode to achieve better fuel economy and avoid unnecessary gearshifts. Dynamic Programming (DP) is used to identify the optimal gear ratios, considering vehicle fuel economy for the EPA75 and Highway Fuel Economy Fuel Test (HWFET) driving cycles. The 4th and 6th gears among the eight gear ratios in the EV mode of PHEV are based on 2-speed gearbox design for an EV, and their gearshift schedules are determined by optimization. Combining the considerations for the hybrid and EV modes of a PHEV, key elements of the proposed HAMT system, including gearshift schedule, clutch combination, and gear ratios for highly efficient operation are determined. The more challenging driveability issues during mode transition from EV to HEV and power-on gearshift with TGF during acceleration are addressed. Both of these two operations require relatively high power/torque outputs and involve multiple powertrain components, including engine, motor, main clutch and gearbox, within a period of two seconds. A lumped-mass model (LMM) of the HAMT-based hybrid vehicle is built to analyze the driveline dynamics in two steady states and four transient states. Each of these states is analyzed independently, according to states of main clutch and gear selectors, considering different phases of the TGF operation and EV-HEV mode transition. The methods for modeling the discontinuity of clutch torque and dog clutch inside the HAMT are discussed to support the subsequent powertrain system modeling and control development. To identify the optimal control schemes for model transition and gearshift, the model-based optimization method for a post-transmission parallel PHEV is developed. The vehicle powertrain model was initially built using AUTONOMIE and MATLAB/Simulink with primary parameters from a prototype PHEV and its dSPACE ASM model developed at University of Victoria. System dynamics in EV mode and hybrid mode are described as a group of state-space equations, which are further discretized into matrix form to simplify the optimization search. A DP-based global optimization method is used to identify the optimal control inputs, including engine torque, motor torque, and main clutch torque. Four principles for desirable EV-HEV mode transitions are extracted based on the results of the optimization. To model different operation modes and complex power flows, the initial baseline powertrain system model is then replaced by a customized MATLAB/SimDriveline model. In this new physics-based powertrain model, gearshift actuators and controller are added to model the gearshift and mode transition processes. To achieve good driveability, the TGF feature of the HAMT design is split into five transient and two steady phases, each corresponding to a fundamental operating mode. Control logics of upshift and downshift, as well as EV-HEV mode transition are introduced. Four principles of mode transition derived from global optimization results are introduced for powertrain system control. Simulations of the HAMT-based hybrid powertrain operations have been carried out to verify the functionality and advantages of the proposed HAMT design in achieving excellent driveability during mode transition and gearshifts. Through controlled coordination of engine, motor and main clutch, EV-HEV mode transition can be achieved smoothly within a period of 2-3 seconds. Even slight driveline fluctuation can be eliminated by dedicated anti-shuffle control with the motors as actuators. The same simulation model also demonstrates excellent driveability during power-on gearshift. Comparing simulation results with and without TGF shows that this new hybrid powertrain system can effectively eliminate torque holes during gearshift. With the demonstrated advantages of this new system in efficiency, torque capacity, simplicity in design and manufacturing costs

Chevrolet Volt

Chevrolet Volt Book
Author : Lindsay Brooke
Publisher : SAE International
Release : 2011-04-04
ISBN : 0768057833
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This compendium presents the most complete design and engineering story available anywhere about this groundbreaking new vehicle. It also introduces you to the engineering team and how they made the world’s first production extended-range electric vehicle a reality. Combining articles from SAE International’s Vehicle Electrification and Automotive Engineering International magazines, new SAE technical papers, and all-new content, this full-color book is the only one of its kind that lifts the veil on how the GM team and key supplier partners met the difficult engineering challenges faced in developing the Volt. Topics include the Volt’s systems, components, and model-based design; a behind-the-wheel look at a Volt prototype; and how the Volt’s engineering team used OnStar to collect test drive data from preproduction Volt vehicles. There is also an interview with GM’s Micky Bly in which the executive explains how the Volt program enabled GM to take new approaches to vehicle electrical architectures.

Vehicle Power Management

Vehicle Power Management Book
Author : Xi Zhang,Chris Mi
Publisher : Springer Science & Business Media
Release : 2011-08-12
ISBN : 9780857297365
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.

Advances in Mechanical Design

Advances in Mechanical Design Book
Author : Jianrong Tan
Publisher : Springer Nature
Release : 2019-09-14
ISBN : 981329941X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Focusing on innovation, these proceedings present recent advances in the field of mechanical design in China and offer researchers, scholars and scientists an international platform for presenting their research findings and exchanging ideas. Gathering outstanding papers from the 2019 International Conference on Mechanical Design (2019 ICMD) and the 20th Mechanical Design Annual Conference, the content is divided into six major sections: industrial design, reliability design, green design, intelligent design, bionic design and innovative design. Readers will learn about the latest trends, cutting-edge findings and hot topics in the field of design.

Electrification of Heavy Duty Construction Vehicles

Electrification of Heavy Duty Construction Vehicles Book
Author : Hong Wang,Yanjun Huang,Amir Khajepour,Chuan Hu
Publisher : Morgan & Claypool Publishers
Release : 2017-12-04
ISBN : 1681732408
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The number of heavy-duty construction vehicles is increasing significantly with growing urban development causing poor air quality and higher emissions. The electrification of construction vehicles is a way to mitigate the resulting air pollution and emissions. In this book, we consider tracked bulldozers, as an example, to demonstrate the approach and evaluate the benefits of the electrification of construction vehicles. The book is intended for senior undergraduate students, graduate students, and anyone with an interest in the electrification of heavy vehicles. The book begins with an introduction to electrification of heavy-duty construction vehicles. The second chapter is focused on the terramechanics and interactions between track and blades with soil. The third chapter presents the architecture and modeling of a series hybrid bulldozer. Finally, the fourth chapter discusses energy management systems for electrified heavy construction vehicles.

College of Engineering University of Michigan Publications

College of Engineering  University of Michigan  Publications Book
Author : University of Michigan. College of Engineering
Publisher : Unknown
Release : 2012
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Also contains brochures, directories, manuals, and programs from various College of Engineering student organizations such as the Society of Women Engineers and Tau Beta Pi.

Modeling for Hybrid and Electric Vehicles Using Simscape

Modeling for Hybrid and Electric Vehicles Using Simscape Book
Author : Shuvra Das
Publisher : Morgan & Claypool Publishers
Release : 2021-05-17
ISBN : 1636391265
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Simscape, a Matlab/Simulink toolbox for modeling physical systems, is the ideal platform for developing and deploying models for hybrid and electric vehicle systems and sub-systems. This book is step-by-step guide through the process of developing precise and accurate models for all critical areas of hybrid and electric vehicles. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. The majority of books currently on the market discuss relevant technologies and the physics and engineering of hybrid and electric vehicles. This book is unique by focusing on developing models of physical systems at the core of these vehicles using the tool of choice, Simscape. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results.