Skip to main content

Medical Image Analysis

In Order to Read Online or Download Medical Image Analysis Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Guide to Medical Image Analysis

Guide to Medical Image Analysis Book
Author : Klaus D. Toennies
Publisher : Springer
Release : 2017-03-29
ISBN : 1447173201
Language : En, Es, Fr & De

GET BOOK

Book Description :

This comprehensive guide provides a uniquely practical, application-focused introduction to medical image analysis. This fully updated new edition has been enhanced with material on the latest developments in the field, whilst retaining the original focus on segmentation, classification and registration. Topics and features: presents learning objectives, exercises and concluding remarks in each chapter; describes a range of common imaging techniques, reconstruction techniques and image artifacts, and discusses the archival and transfer of images; reviews an expanded selection of techniques for image enhancement, feature detection, feature generation, segmentation, registration, and validation; examines analysis methods in view of image-based guidance in the operating room (NEW); discusses the use of deep convolutional networks for segmentation and labeling tasks (NEW); includes appendices on Markov random field optimization, variational calculus and principal component analysis.

Medical Image Analysis

Medical Image Analysis Book
Author : Atam P. Dhawan
Publisher : John Wiley & Sons
Release : 2011-03-29
ISBN : 0470922893
Language : En, Es, Fr & De

GET BOOK

Book Description :

The expanded and revised edition will split Chapter 4 to include more details and examples in FMRI, DTI, and DWI for MR image modalities. The book will also expand ultrasound imaging to 3-D dynamic contrast ultrasound imaging in a separate chapter. A new chapter on Optical Imaging Modalities elaborating microscopy, confocal microscopy, endoscopy, optical coherent tomography, fluorescence and molecular imaging will be added. Another new chapter on Simultaneous Multi-Modality Medical Imaging including CT-SPECT and CT-PET will also be added. In the image analysis part, chapters on image reconstructions and visualizations will be significantly enhanced to include, respectively, 3-D fast statistical estimation based reconstruction methods, and 3-D image fusion and visualization overlaying multi-modality imaging and information. A new chapter on Computer-Aided Diagnosis and image guided surgery, and surgical and therapeutic intervention will also be added. A companion site containing power point slides, author biography, corrections to the first edition and images from the text can be found here: ftp://ftp.wiley.com/public/sci_tech_med/medical_image/ Send an email to: [email protected] to obtain a solutions manual. Please include your affiliation in your email.

Medical Image Analysis and Informatics

Medical Image Analysis and Informatics Book
Author : Paulo Mazzoncini de Azevedo-Marques,Arianna Mencattini,Marcello Salmeri,Rangaraj M. Rangayyan
Publisher : CRC Press
Release : 2018-03-05
ISBN : 1351230824
Language : En, Es, Fr & De

GET BOOK

Book Description :

With the development of rapidly increasing medical imaging modalities and their applications, the need for computers and computing in image generation, processing, visualization, archival, transmission, modeling, and analysis has grown substantially. Computers are being integrated into almost every medical imaging system. Medical Image Analysis and Informatics demonstrates how quantitative analysis becomes possible by the application of computational procedures to medical images. Furthermore, it shows how quantitative and objective analysis facilitated by medical image informatics, CBIR, and CAD could lead to improved diagnosis by physicians. Whereas CAD has become a part of the clinical workflow in the detection of breast cancer with mammograms, it is not yet established in other applications. CBIR is an alternative and complementary approach for image retrieval based on measures derived from images, which could also facilitate CAD. This book shows how digital image processing techniques can assist in quantitative analysis of medical images, how pattern recognition and classification techniques can facilitate CAD, and how CAD systems can assist in achieving efficient diagnosis, in designing optimal treatment protocols, in analyzing the effects of or response to treatment, and in clinical management of various conditions. The book affirms that medical imaging, medical image analysis, medical image informatics, CBIR, and CAD are proven as well as essential techniques for health care.

Computer Vision Approaches to Medical Image Analysis

Computer Vision Approaches to Medical Image Analysis Book
Author : Reinhard R. Beichel
Publisher : Springer Science & Business Media
Release : 2006-09-29
ISBN : 3540462570
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the thoroughly refereed post proceedings of the international workshop Computer Vision Approaches to Medical Image Analysis, CVAMIA 2006, held in Graz, Austria in May 2006 as a satellite event of the 9th European Conference on Computer Vision, EECV 2006. The 10 revised full papers and 11 revised poster papers presented together with one invited talk were carefully reviewed and selected from 38 submissions.

Cloud Based Benchmarking of Medical Image Analysis

Cloud Based Benchmarking of Medical Image Analysis Book
Author : Allan Hanbury,Henning Müller,Georg Langs
Publisher : Springer
Release : 2017-05-16
ISBN : 3319496441
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is open access under a CC BY-NC 2.5 license. This book presents the VISCERAL project benchmarks for analysis and retrieval of 3D medical images (CT and MRI) on a large scale, which used an innovative cloud-based evaluation approach where the image data were stored centrally on a cloud infrastructure and participants placed their programs in virtual machines on the cloud. The book presents the points of view of both the organizers of the VISCERAL benchmarks and the participants. The book is divided into five parts. Part I presents the cloud-based benchmarking and Evaluation-as-a-Service paradigm that the VISCERAL benchmarks used. Part II focuses on the datasets of medical images annotated with ground truth created in VISCERAL that continue to be available for research. It also covers the practical aspects of obtaining permission to use medical data and manually annotating 3D medical images efficiently and effectively. The VISCERAL benchmarks are described in Part III, including a presentation and analysis of metrics used in evaluation of medical image analysis and search. Lastly, Parts IV and V present reports by some of the participants in the VISCERAL benchmarks, with Part IV devoted to the anatomy benchmarks and Part V to the retrieval benchmark. This book has two main audiences: the datasets as well as the segmentation and retrieval results are of most interest to medical imaging researchers, while eScience and computational science experts benefit from the insights into using the Evaluation-as-a-Service paradigm for evaluation and benchmarking on huge amounts of data.

Color Medical Image Analysis

Color Medical Image Analysis Book
Author : M. Emre Celebi,Gerald Schaefer
Publisher : Springer Science & Business Media
Release : 2012-09-16
ISBN : 9400753896
Language : En, Es, Fr & De

GET BOOK

Book Description :

Since the early 20th century, medical imaging has been dominated by monochrome imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic resonance imaging. As a result, color information has been overlooked in medical image analysis applications. Recently, various medical imaging modalities that involve color information have been introduced. These include cervicography, dermoscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound photography. However, in comparison to monochrome images, the analysis of color images is a relatively unexplored area. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for monochrome images are often not directly applicable to multichannel images. The goal of this volume is to summarize the state-of-the-art in the utilization of color information in medical image analysis.

Handbook of Medical Image Processing and Analysis

Handbook of Medical Image Processing and Analysis Book
Author : Isaac Bankman
Publisher : Elsevier
Release : 2008-12-24
ISBN : 9780080559148
Language : En, Es, Fr & De

GET BOOK

Book Description :

The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication. The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries. For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing. Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. Includes contributions from internationally renowned authors from leading institutions NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. Provides a complete collection of algorithms in computer processing of medical images Contains over 60 pages of stunning, four-color images

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis Book
Author : S. Kevin Zhou,Hayit Greenspan,Dinggang Shen
Publisher : Academic Press
Release : 2017-01-18
ISBN : 0128104090
Language : En, Es, Fr & De

GET BOOK

Book Description :

Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache

Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis

Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis Book
Author : Milan Sonka,Ioannis A. Kakadiaris,Jan Kybic
Publisher : Springer Science & Business Media
Release : 2004-09-20
ISBN : 3540226753
Language : En, Es, Fr & De

GET BOOK

Book Description :

Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.

Soft Computing Based Medical Image Analysis

Soft Computing Based Medical Image Analysis Book
Author : Nilanjan Dey,Amira Ashour,Fuquian Shi,Valentina E. Balas
Publisher : Academic Press
Release : 2018-01-18
ISBN : 0128131748
Language : En, Es, Fr & De

GET BOOK

Book Description :

Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain Highlights challenges and the future scope for soft computing based medical analysis and processing techniques

Advancement of Machine Intelligence in Interactive Medical Image Analysis

Advancement of Machine Intelligence in Interactive Medical Image Analysis Book
Author : Om Prakash Verma,Sudipta Roy,Subhash Chandra Pandey,Mamta Mittal
Publisher : Springer Nature
Release : 2019-12-11
ISBN : 9811511004
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. It examines the latest technologies and that have been implemented in clinical practice, such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.

Mesh Processing in Medical Image Analysis 2012

Mesh Processing in Medical Image Analysis 2012 Book
Author : Joshua A. Levine,Rasmus R. Paulsen,Yongjie Zhang
Publisher : Springer
Release : 2012-08-22
ISBN : 9783642334627
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the refereed proceedings of the International Workshop on Mesh Processing in Medical Image Analysis, MeshMed 2012, held in Nice, France, in October 2012 in conjunction with MICCAI 2012, the 15th International Conference on Medical Image Computing and Computer Assisted Intervention. The book includes 16 submissions, 8 were selected for presentation along with the 3 plenary talks representative of the meshing, and 8 were selected for poster presentations. The papers cover a broad range of topics, including statistical shape analysis and atlas construction, novel meshing approaches, soft tissue simulation, quad dominant meshing and mesh based shape descriptors. The described techniques were applied to a variety of medical data including cortical bones, ear canals, cerebral aneurysms and vascular structures.

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis Book
Author : Gobert Lee,Hiroshi Fujita (Computer scientist)
Publisher : Unknown
Release : 2020
ISBN : 9783030331306
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis Book
Author : Tapan K. Gandhi,Siddhartha Bhattacharyya,Sourav De,Debanjan Konar,Sandip Dey
Publisher : Academic Press
Release : 2020-08-11
ISBN : 0128192968
Language : En, Es, Fr & De

GET BOOK

Book Description :

Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence Highlights the advancement of conventional approaches in the field of medical image processing Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis

Medical Image Processing

Medical Image Processing Book
Author : Geoff Dougherty
Publisher : Springer Science & Business Media
Release : 2011-07-25
ISBN : 9781441997791
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Book
Author : Danail Stoyanov,Zeike Taylor,Gustavo Carneiro,Tanveer Syeda-Mahmood,Anne Martel,Lena Maier-Hein,João Manuel R.S. Tavares,Andrew Bradley,João Paulo Papa,Vasileios Belagiannis,Jacinto C. Nascimento,Zhi Lu,Sailesh Conjeti,Mehdi Moradi,Hayit Greenspan,Anant Madabhushi
Publisher : Springer
Release : 2018-09-19
ISBN : 3030008894
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Introduction to Medical Image Analysis

Introduction to Medical Image Analysis Book
Author : Rasmus R. Paulsen,Thomas B. Moeslund
Publisher : Springer
Release : 2020-05-27
ISBN : 9783030393632
Language : En, Es, Fr & De

GET BOOK

Book Description :

This easy-to-follow textbook presents an engaging introduction to the fascinating world of medical image analysis. Avoiding an overly mathematical treatment, the text focuses on intuitive explanations, illustrating the key algorithms and concepts in a way which will make sense to students from a broad range of different backgrounds. Topics and features: explains what light is, and how it can be captured by a camera and converted into an image, as well as how images can be compressed and stored; describes basic image manipulation methods for understanding and improving image quality, and a useful segmentation algorithm; reviews the basic image processing methods for segmenting or enhancing certain features in an image, with a focus on morphology methods for binary images; examines how to detect, describe, and recognize objects in an image, and how the nature of color can be used for segmenting objects; introduces a statistical method to determine what class of object the pixels in an image represent; describes how to change the geometry within an image, how to align two images so that they are as similar as possible, and how to detect lines and paths in images; provides further exercises and other supplementary material at an associated website. This concise and accessible textbook will be invaluable to undergraduate students of computer science, engineering, medicine, and any multi-disciplinary courses that combine topics on health with data science. Medical practitioners working with medical imaging devices will also appreciate this easy-to-understand explanation of the technology.

Riemannian Geometric Statistics in Medical Image Analysis

Riemannian Geometric Statistics in Medical Image Analysis Book
Author : Xavier Pennec,Stefan Sommer,Tom Fletcher
Publisher : Academic Press
Release : 2019-09-02
ISBN : 0128147261
Language : En, Es, Fr & De

GET BOOK

Book Description :

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. A complete reference covering both the foundations and state-of-the-art methods Edited and authored by leading researchers in the field Contains theory, examples, applications, and algorithms Gives an overview of current research challenges and future applications

Marginal Space Learning for Medical Image Analysis

Marginal Space Learning for Medical Image Analysis Book
Author : Yefeng Zheng,Dorin Comaniciu
Publisher : Springer Science & Business
Release : 2014-04-16
ISBN : 1493906003
Language : En, Es, Fr & De

GET BOOK

Book Description :

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Fetal Infant and Ophthalmic Medical Image Analysis

Fetal  Infant and Ophthalmic Medical Image Analysis Book
Author : M. Jorge Cardoso,Tal Arbel,Andrew Melbourne,Hrvoje Bogunovic,Pim Moeskops,Xinjian Chen,Ernst Schwartz,Mona Garvin,Emma Robinson,Emanuele Trucco,Michael Ebner,Yanwu Xu,Antonios Makropoulos,Adrien Desjardin,Tom Vercauteren
Publisher : Springer
Release : 2017-09-06
ISBN : 3319675613
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the refereed joint proceedings of the International Workshop on Fetal and Infant Image Analysis, FIFI 2017, and the 6th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 8 full papers presented at FIFI 2017 and the 20 full papers presented at OMIA 2017 were carefully reviewed and selected. The FIFI papers feature research on advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period. The OMIA papers cover various topics in the field of ophthalmic image analysis.