Author : Ferre Knaepkens

Publisher :

Release : 2017

ISBN :

Language : En, Es, Fr & De

GET BOOK

**Book Description : **

This thesis studies three different subjects, namely tensors and tensor decomposition, sparse interpolation and Pad\'e or rational approximation theory. These problems find their origin in various fields within mathematics: on the one hand tensors originate from algebra and are of importance in computer science and knowledge technology, while on the other hand sparse interpolation and Pad\'e approximations stem from approximation theory. Although all three problems seem totally unrelated, they are deeply intertwined. The connection between them is exactly he goal of this thesis. These connections are of importance since they allow us to solve the symmetric tensor decomposition problem by means of a corresponding sparse interpolation problem or an appropriate Pad\'e approximant. The first section gives a short introduction on tensors. Here, starting from the points of view of matrices and vectors, a generalization is made to tensors. Also a link is made to other known concepts within matrix-algebra. Subsequently, three definitions of tensor rank are discussed. The first definition is the most general and is based on the decomposition by means of the outer product of vectors. The second definition is only applicable for symmetric tensors and is based on a decomposition by means of symmetric outer products of vectors. Finally, the last definition is also only applicable for symmetric tensors and is based o the decomposition of a related homogeneous polynomial. It can be shown that these last two definitions are equal and they are also the only definitions used in the continuation of the thesis. In particular, this last definition since it supplies the connection with approximation theory. Finally, a well-known method (ALS) to find these tensor decompositions is shortly discussed. However, ALS has some shortcomings en that is exactly the reason that the connections to approximation theory are of such importance. Sections two and three discuss the first problem of both within approximation theory, namely sparse interpolation. In the second section, The univariate problem is considered. This problem can be solved with Prony's method, which consists of finding the zeroes of a related polynomial or solving a generalized eigenvalue problem. The third section continues on the second since it discusses multivariate sparse interpolation. Prony's method for the univariate case is changed to also provide a solution for the multivariate problem. The fourth and fifth section have as subject Pad\'e or rational approximation theory. Like the name suggests, it consists of approximating a power series by a rational function. Section four first introduces univariate Pad\'e approximants and states some important properties of them. Here, shortly the connection is made with continued fraction to use this theory later on. Finally, some methods to find Pad\'e approximants are discussed, namely the Levinson algorithm, the determinant formulas and the qd-algorithm. Section five continues on section four and discusses multivariate Pad\'e approximation theory. It is shown that a shift of the univariate conditions occurs, however, despite this shift still a lot of the important properties of the univariate case remain true. Also an extension of the qd-algorithm for multivariate Pad\'e approximants is discussed. Section six bundles all previous sections to expose the connections between the three seemingly different problems. The discussion of these connections is done in two steps in the univariate case, first the tensor decomposition problem is rewritten as a sparse interpolation problem and subsequently, it is shown that the sparse interpolation problem can be solved by means of Pad\'e approximants. In the multivariate case, also the connection between tensor decomposition and sparse interpolation is discussed first. Subsequently, a parameterized approach is introduces, which converts the multivariate problem to a parameterized univariate problem such that the connections of the first part apply. This parameterized approach also lead to the connection between tensor decomposition, multivariate sparse interpolation and multivariate Pad\'e approximation theory. The last or seventh section consists of two examples, a univariate problem and a multivariate one. The techniques of previous sections are used to demonstrate the connections of section six. This section also serves as illustration of the methods of sections two until five to solve sparse interpolation and Pad\'e approximation problems.