Skip to main content

Mathematics For Neuroscientists

Download Mathematics For Neuroscientists Full eBooks in PDF, EPUB, and kindle. Mathematics For Neuroscientists is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Mathematics for Neuroscientists

Mathematics for Neuroscientists Book
Author : Fabrizio Gabbiani,Steven James Cox
Publisher : Academic Press
Release : 2017-03-21
ISBN : 0128019069
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience Book
Author : G. Bard Ermentrout,David H. Terman
Publisher : Springer Science & Business Media
Release : 2010-07-01
ISBN : 0387877088
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Models of the Mind

Models of the Mind Book
Author : Grace Lindsay
Publisher : Bloomsbury Publishing
Release : 2021-03-04
ISBN : 1472966457
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.

Music Math and Mind

Music  Math  and Mind Book
Author : David Sulzer
Publisher : Unknown
Release : 2021-03-23
ISBN : 9780231193788
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a lively exploration of the mathematics, physics, and neuroscience that underlie music. Written for musicians and music lovers with any level of science and math proficiency, including none, Music, Math, and Mind demystifies how music works while testifying to its beauty and wonder.

An Introduction to Mathematical Cognition

An Introduction to Mathematical Cognition Book
Author : Camilla Gilmore,Silke M. Göbel,Matthew Inglis
Publisher : Routledge
Release : 2018-06-13
ISBN : 1317410106
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The last decade has seen a rapid growth in our understanding of the cognitive systems that underlie mathematical learning and performance, and an increased recognition of the importance of this topic. This book showcases international research on the most important cognitive issues that affect mathematical performance across a wide age range, from early childhood to adulthood. The book considers the foundational competencies of nonsymbolic and symbolic number processing before discussing arithmetic, conceptual understanding, individual differences and dyscalculia, algebra, number systems, reasoning and higher-level mathematics such as formal proof. Drawing on diverse methodology from behavioural experiments to brain imaging, each chapter discusses key theories and empirical findings and introduces key tasks used by researchers. The final chapter discusses challenges facing the future development of the field of mathematical cognition and reviews a set of open questions that mathematical cognition researchers should address to move the field forward. This book is ideal for undergraduate or graduate students of psychology, education, cognitive sciences, cognitive neuroscience and other academic and clinical audiences including mathematics educators and educational psychologists.

Foundations and Methods from Mathematics to Neuroscience

Foundations and Methods from Mathematics to Neuroscience Book
Author : Colleen E. Crangle,Adolfo García de la Sienra,Helen E. Longino
Publisher : Stanford Univ Center for the Study
Release : 2015-01
ISBN : 9781575867441
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"Center for the Study of Language and Information, Leland Stanford Junior University."

Math for Scientists

Math for Scientists Book
Author : Natasha Maurits,Branislava Ćurčić-Blake
Publisher : Springer
Release : 2017-08-26
ISBN : 3319573543
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.

Signal Processing for Neuroscientists

Signal Processing for Neuroscientists Book
Author : Wim van Drongelen
Publisher : Elsevier
Release : 2006-12-18
ISBN : 9780080467757
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the ‘golden trio’ in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. Multiple color illustrations are integrated in the text Includes an introduction to biomedical signals, noise characteristics, and recording techniques Basics and background for more advanced topics can be found in extensive notes and appendices A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience Book
Author : Paul Miller
Publisher : MIT Press
Release : 2018-10-09
ISBN : 0262347563
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

MATLAB for Neuroscientists

MATLAB for Neuroscientists Book
Author : Pascal Wallisch,Michael E. Lusignan,Marc D. Benayoun,Tanya I. Baker,Adam Seth Dickey,Nicholas G. Hatsopoulos
Publisher : Academic Press
Release : 2014-01-09
ISBN : 0123838371
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience

The Oxford Handbook of Numerical Cognition

The Oxford Handbook of Numerical Cognition Book
Author : Roi Kadosh,Ann Dowker
Publisher : OUP Oxford
Release : 2015-07-30
ISBN : 0191036005
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.

How Our Emotions and Bodies are Vital for Abstract Thought

How Our Emotions and Bodies are Vital for Abstract Thought Book
Author : Anna Sverdlik
Publisher : Routledge
Release : 2018-06-18
ISBN : 1351344757
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

If mathematics is the purest form of knowledge, the perfect foundation of all the hard sciences, and a uniquely precise discipline, then how can the human brain, an imperfect and imprecise organ, process mathematical ideas? Is mathematics made up of eternal, universal truths? Or, as some have claimed, could mathematics simply be a human invention, a kind of tool or metaphor? These questions are among the greatest enigmas of science and epistemology, discussed at length by mathematicians, physicians, and philosophers. But, curiously enough, neuroscientists have been absent in the debate, even though it is precisely the field of neuroscience—which studies the brain’s mechanisms for thinking and reasoning—that ought to be at the very center of these discussions. How our Emotions and Bodies are Vital for Abstract Thought explores the unique mechanisms of cooperation between the body, emotions, and the cortex, based on fundamental physical principles. It is these mechanisms that help us to overcome the limitations of our physiology and allow our imperfect, human brains to make transcendent mathematical discoveries. This book is written for anyone who is interested in the nature of abstract thought, including mathematicians, physicists, computer scientists, psychologists, and psychiatrists.

Tutorials in Mathematical Biosciences I

Tutorials in Mathematical Biosciences I Book
Author : Alla Borisyuk,G. Bard Ermentrout,Avner Friedman,David H. Terman
Publisher : Springer Science & Business Media
Release : 2005-02-18
ISBN : 9783540238584
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.

Network Neuroscience

Network Neuroscience Book
Author : Flavio Fröhlich
Publisher : Academic Press
Release : 2016-09-20
ISBN : 0128015861
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Studying brain networks has become a truly interdisciplinary endeavor, attracting students and seasoned researchers alike from a wide variety of academic backgrounds. What has been lacking is an introductory textbook that brings together the different fields and provides a gentle introduction to the major concepts and findings in the emerging field of network neuroscience. Network Neuroscience is a one-stop-shop that is of equal use to the neurobiologist, who is interested in understanding the quantitative methods employed in network neuroscience, and to the physicist or engineer, who is interested in neuroscience applications of mathematical and engineering tools. The book spans 27 chapters that cover everything from individual cells all the way to complex network disorders such as depression and autism spectrum disorders. An additional 12 toolboxes provide the necessary background for making network neuroscience accessible independent of the reader’s background. Dr. Flavio Frohlich (www.networkneuroscientist.org) wrote this book based on his experience of mentoring dozens of trainees in the Frohlich Lab, from undergraduate students to senior researchers. The Frohlich lab (www.frohlichlab.org) pursues a unique and integrated vision that combines computer simulations, animal model studies, human studies, and clinical trials with the goal of developing novel brain stimulation treatments for psychiatric disorders. The book is based on a course he teaches at UNC that has attracted trainees from many different departments, including neuroscience, biomedical engineering, psychology, cell biology, physiology, neurology, and psychiatry. Dr. Frohlich has consistently received rave reviews for his teaching. With this book he hopes to make his integrated view of neuroscience available to trainees and researchers on a global scale. His goal is to make the book the training manual for the next generation of (network) neuroscientists, who will be fusing biology, engineering, and medicine to unravel the big questions about the brain and to revolutionize psychiatry and neurology. Easy-to-read, comprehensive introduction to the emerging field of network neuroscience Includes 27 chapters packed with information on topics from single neurons to complex network disorders such as depression and autism Features 12 toolboxes serve as primers to provide essential background knowledge in the fields of biology, mathematics, engineering, and physics

Brain Signals

Brain Signals Book
Author : Risto J. Ilmoniemi,Jukka Sarvas
Publisher : MIT Press
Release : 2019-05-28
ISBN : 0262039826
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A unified treatment of the generation and analysis of brain-generated electromagnetic fields. In Brain Signals, Risto Ilmoniemi and Jukka Sarvas present the basic physical and mathematical principles of magnetoencephalography (MEG) and electroencephalography (EEG), describing what kind of information is available in the neuroelectromagnetic field and how the measured MEG and EEG signals can be analyzed. Unlike most previous works on these topics, which have been collections of writings by different authors using different conventions, this book presents the material in a unified manner, providing the reader with a thorough understanding of basic principles and a firm basis for analyzing data generated by MEG and EEG. The book first provides a brief introduction to brain states and the early history of EEG and MEG, describes the generation of electromagnetic fields by neuronal activity, and discusses the electromagnetic forward problem. The authors then turn to EEG and MEG analysis, offering a review of linear and matrix algebra and basic statistics needed for analysis of the data, and presenting several analysis methods: dipole fitting; the minimum norm estimate (MNE); beamforming; the multiple signal classification algorithm (MUSIC), including RAP-MUSIC with the RAP dilemma and TRAP-MUSIC, which removes the RAP dilemma; independent component analysis (ICA); and blind source separation (BSS) with joint diagonalization.

Science Music And Mathematics The Deepest Connections

Science  Music  And Mathematics  The Deepest Connections Book
Author : Michael Edgeworth Mcintyre
Publisher : World Scientific
Release : 2021-11-03
ISBN : 9811240752
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Professor Michael Edgeworth McIntyre is an eminent scientist who has also had a part-time career as a musician. From a lifetime's thinking, he offers this extraordinary synthesis exposing the deepest connections between science, music, and mathematics, while avoiding equations and technical jargon. He begins with perception psychology and the dichotomization instinct and then takes us through biological evolution, human language, and acausality illusions all the way to the climate crisis and the weaponization of the social media, and beyond that into the deepest parts of theoretical physics — demonstrating our unconscious mathematical abilities.He also has an important message of hope for the future. Contrary to popular belief, biological evolution has given us not only the nastiest, but also the most compassionate and cooperative parts of human nature. This insight comes from recognizing that biological evolution is more than a simple competition between selfish genes. Rather, he suggests, in some ways it is more like turbulent fluid flow, a complex process spanning a vast range of timescales.Professor McIntyre is a Fellow of the Royal Society of London (FRS) and has worked on problems as diverse as the Sun's magnetic interior, the Antarctic ozone hole, jet streams in the atmosphere, and the psychophysics of violin sound. He has long been interested in how different branches of science can better communicate with each other and with the public, harnessing aspects of neuroscience and psychology that point toward the deep 'lucidity principles' that underlie skilful communication.

Heterogeneous Contributions to Numerical Cognition

Heterogeneous Contributions to Numerical Cognition Book
Author : Wim Fias,Avishai Henik
Publisher : Academic Press
Release : 2021-05-28
ISBN : 0128174153
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Arithmetic disability stems from deficits in neurodevelopment, with great individual differences in development or function of an individual at neuroanatomical, neuropsychological, behavioral, and interactional levels. Heterogeneous Contributions to Numerical Cognition: Learning and Education in Mathematical Cognition examines research in mathematical education methods and their neurodevelopmental basis, focusing on the underlying neurodevelopmental features that must be taken into account when teaching and learning mathematics. Cognitive domains and functions such as executive functions, memory, attention, and language contribute to numerical cognition and are essential for its proper development. These lines of research and thinking in neuroscience are discussed in this book to further the understanding of the neurodevelopmental and cognitive basis of more complex forms of mathematics – and how to best teach them. By unravelling the basic building blocks of numerical thinking and the developmental basis of human capacity for arithmetic, this book and the discussions within are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. A novel innovative reference on the emerging field of numerical cognition and neurodevelopment underlying mathematical education Includes an overview of the multiple disciplines that comprise numerical cognition written by world-leading researchers in the numerical cognition and neurodevelopment fields Features an innovative organization with each section providing a general overview, developmental research, neurocognitive mechanisms, and discussion about relevant studies

23 Problems in Systems Neuroscience

23 Problems in Systems Neuroscience Book
Author : J. Leo van Hemmen,Terrence J. Sejnowski
Publisher : Oxford University Press on Demand
Release : 2006-01
ISBN : 0195148223
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The complexity of the brain and the protean nature of behavior remain the most elusive area of science, but also the most important. van Hemmen and Sejnowski invited 23 experts from the many areas--from evolution to qualia--of systems neuroscience to formulate one problem each. Although each chapter was written independently and can be read separately, together they provide a useful roadmap to the field of systems neuroscience and will serve as a source of inspirations for future explorers of the brain.

Computational Psychiatry

Computational Psychiatry Book
Author : Alan Anticevic,John D Murray
Publisher : Academic Press
Release : 2017-09-19
ISBN : 0128098260
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Computational Psychiatry: Mathematical Modeling of Mental Illness is the first systematic effort to bring together leading scholars in the fields of psychiatry and computational neuroscience who have conducted the most impactful research and scholarship in this area. It includes an introduction outlining the challenges and opportunities facing the field of psychiatry that is followed by a detailed treatment of computational methods used in the service of understanding neuropsychiatric symptoms, improving diagnosis and guiding treatments. This book provides a vital resource for the clinical neuroscience community with an in-depth treatment of various computational neuroscience approaches geared towards understanding psychiatric phenomena. Its most valuable feature is a comprehensive survey of work from leaders in this field. Offers an in-depth overview of the rapidly evolving field of computational psychiatry Written for academics, researchers, advanced students and clinicians in the fields of computational neuroscience, clinical neuroscience, psychiatry, clinical psychology, neurology and cognitive neuroscience Provides a comprehensive survey of work from leaders in this field and a presentation of a range of computational psychiatry methods and approaches geared towards a broad array of psychiatric problems

Simulating Analyzing and Animating Dynamical Systems

Simulating  Analyzing  and Animating Dynamical Systems Book
Author : Bard Ermentrout
Publisher : SIAM
Release : 2002-01-01
ISBN : 0898715067
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations. Instructors, students, and researchers will all benefit from this book, which demonstrates how to use software tools to simulate and study sets of equations that arise in a variety of applications. Instructors will learn how to use computer software in their differential equations and modeling classes, while students will learn how to create animations of their equations that can be displayed on the World Wide Web. Researchers will be introduced to useful tricks that will allow them to take full advantage of XPPAUT's capabilities.