Skip to main content

Machine Learning In Bio Signal Analysis And Diagnostic Imaging

Download Machine Learning In Bio Signal Analysis And Diagnostic Imaging Full eBooks in PDF, EPUB, and kindle. Machine Learning In Bio Signal Analysis And Diagnostic Imaging is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Machine Learning in Bio Signal Analysis and Diagnostic Imaging

Machine Learning in Bio Signal Analysis and Diagnostic Imaging Book
Author : Nilanjan Dey,Surekha Borra,Amira S. Ashour,Fuqian Shi
Publisher : Academic Press
Release : 2018-11-30
ISBN : 012816087X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Signal Processing and Machine Learning for Biomedical Big Data

Signal Processing and Machine Learning for Biomedical Big Data Book
Author : Ervin Sejdic,Tiago H. Falk
Publisher : CRC Press
Release : 2018-07-04
ISBN : 1351061216
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This will be a comprehensive, multi-contributed reference work that will detail the latest research and developments in biomedical signal processing related to big data medical analysis. It will describe signal processing, machine learning, and parallel computing strategies to revolutionize the world of medical analytics and diagnosis as presented by world class researchers and experts in this important field. The chapters will desribe tools that can be used by biomedical and clinical practitioners as well as industry professionals. It will give signal processing researchers a glimpse into the issues faced with Big Medical Data.

Bioengineering and Biomedical Signal and Image Processing

Bioengineering and Biomedical Signal and Image Processing Book
Author : Ignacio Rojas,Daniel Castillo-Secilla,Luis Javier Herrera,Héctor Pomares
Publisher : Springer Nature
Release : 2021-10-08
ISBN : 3030881636
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book constitutes the refereed proceedings of the First International Conference on Bioengineering and Biomedical Signal and Image Processing, BIOMESIP 2021, held in Meloneras, Gran Canaria, Spain, in July 2021. The 41 full and 5 short papers were carefully reviewed and selected from 121 submissions. The papers are grouped in topical issues on biomedical applications in molecular, structural, and functional imaging; biomedical computing; biomedical signal measurement, acquisition and processing; computerized medical imaging and graphics; disease control and diagnosis; neuroimaging; pattern recognition and machine learning for biosignal data; personalized medicine; and COVID-19.

Biosignal Processing and Classification Using Computational Learning and Intelligence

Biosignal Processing and Classification Using Computational Learning and Intelligence Book
Author : Alejandro Antonio Torres Garcia,Carlos Alberto Reyes Garcia,Luis Villasenor-Pineda,Omar Mendoza-Montoya
Publisher : Elsevier
Release : 2021-10-15
ISBN : 0128201258
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others. Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques Book
Author : Abdulhamit Subasi
Publisher : Academic Press
Release : 2019-03-16
ISBN : 0128176733
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Machine Intelligence and Signal Analysis

Machine Intelligence and Signal Analysis Book
Author : M. Tanveer,Ram Bilas Pachori
Publisher : Springer
Release : 2018-08-07
ISBN : 981130923X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.

Advances in Deep Learning for Medical Image Analysis

Advances in Deep Learning for Medical Image Analysis Book
Author : Archana Mire,Vinayak Elangovan,Shailaja Patil
Publisher : CRC Press
Release : 2022-04-28
ISBN : 1000575950
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer’s disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.

Sensors for Health Monitoring

Sensors for Health Monitoring Book
Author : Nilanjan Dey,Jyotismita Chaki,Rajesh Kumar
Publisher : Academic Press
Release : 2019-09-09
ISBN : 012819362X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Sensors for Health Monitoring discusses the characteristics of U-Healthcare systems in different domains, providing a foundation for working professionals and undergraduate and postgraduate students. The book provides information and advice on how to choose the best sensors for a U-Healthcare system, advises and guides readers on how to overcome challenges relating to data acquisition and signal processing, and presents comprehensive coverage of up-to-date requirements in hardware, communication and calculation for next-generation uHealth systems. It then compares new technological and technical trends and discusses how they address expected u-Health requirements. In addition, detailed information on system operations is presented and challenges in ubiquitous computing are highlighted. The book not only helps beginners with a holistic approach toward understanding u-Health systems, but also presents researchers with the technological trends and design challenges they may face when designing such systems. Presents an outstanding update on the use of U-Health data analysis and management tools in different applications, highlighting sensor systems Highlights Internet of Things enabled U-Healthcare Covers different data transmission techniques, applications and challenges with extensive case studies for U-Healthcare systems

Applications of Artificial Intelligence in Medical Imaging

Applications of Artificial Intelligence in Medical Imaging Book
Author : Abdulhamit Subasi
Publisher : Academic Press
Release : 2022-11-15
ISBN : 9780443184505
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Applications of Artificial Intelligence in Medical Imaging provides the description of various biomedical image analysis in disease detection using AI that can be used to incorporate knowledge obtained from different medical imaging devices such as CT, X-ray, PET and ultrasound. The book discusses the use of AI for detection of several cancer types, including brain tumor, breast, pancreatic, rectal, lung colon, and skin. In addition, it explains how AI and deep learning techniques can be used to diagnose Alzheimer's, Parkinson's, COVID-19 and mental conditions. This is a valuable resource for clinicians, researchers and healthcare professionals who are interested in learning more about AI and its impact in medical/biomedical image analysis. Discusses new deep learning algorithms for image analysis and how they are used for medical images Provides several examples for each imaging technique, along with their application areas so that readers can rely on them as a clinical decision support system Describes how new AI tools may contribute significantly to the successful enhancement of a single patient's clinical knowledge to improve treatment outcomes

Intelligent Decision Support Systems

Intelligent Decision Support Systems Book
Author : Surekha Borra,Nilanjan Dey,Siddhartha Bhattacharyya,Mohamed Salim Bouhlel
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2019-10-21
ISBN : 311062110X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Intelligent prediction and decision support systems are based on signal processing, computer vision (CV), machine learning (ML), software engineering (SE), knowledge based systems (KBS), data mining, artificial intelligence (AI) and include several systems developed from the study of expert systems (ES), genetic algorithms (GA), artificial neural networks (ANN) and fuzzy-logic systems The use of automatic decision support systems in design and manufacturing industry, healthcare and commercial software development systems has the following benifits: Cost savings in companies, due to employment of expert system technology. Fast decision making, completion of projects in time and development of new products. Improvement in decision making capability and quality. Usage of Knowledge database and Preservation of expertise of individuals Eases complex decision problems. Ex: Diagnosis in Healthcare To address the issues and challenges related to development, implementation and application of automatic and intelligent prediction and decision support systems in domains such as manufacturing, healthcare and software product design, development and optimization, this book aims to collect and publish wide ranges of quality articles such as original research contributions, methodological reviews, survey papers, case studies and/or reports covering intelligent systems, expert prediction systems, evaluation models, decision support systems and Computer Aided Diagnosis (CAD).

Machine Learning for Critical Internet of Medical Things

Machine Learning for Critical Internet of Medical Things Book
Author : Fadi Al-Turjman,Anand Nayyar
Publisher : Springer Nature
Release : 2022
ISBN : 3030809285
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how machine learning can also help make fast and more accurate disease diagnoses, easily identify patients, help in new types of therapies or treatments, model small-molecule drugs in pharmaceutical sector, and help with innovations via integrated technologies such as artificial intelligence as well as deep learning. The authors show how machine learning also improves the physicians and doctors medical capabilities to better diagnosis their patients. This book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning that will enhance the efficiency and effectiveness of the healthcare system. Provides researchers in machine and deep learning with a conceptual understanding of various methodologies of implementing the technologies in medical areas; Discusses the role machine learning and IoT play into locating different virus and diseases across the globe, such as COVID-19, Ebola, and cervical cancer; Includes fundamentals and advances in machine learning in the medical field, supported by significant case studies and practical applications.

Bioinformatics and Biomedical Engineering

Bioinformatics and Biomedical Engineering Book
Author : Ignacio Rojas,Olga Valenzuela,Fernando Rojas,Luis Javier Herrera,Francisco Ortuño
Publisher : Springer Nature
Release : 2022-06-07
ISBN : 3031078020
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This volume constitutes the proceedings of the 9th International Work-Conference on IWBBIO 2020, held in Maspalomas, Gran Canaria, Spain, in June 2022. The total of 75 papers presented in the proceedings, was carefully reviewed and selected from 212 submissions. The papers cover the latest ideas and realizations in the foundations, theory, models, and applications for interdisciplinary and multidisciplinary research encompassing disciplines of computer science, mathematics, statistics, biology, bioinformatics, and biomedicine.

Computational Intelligence Methods in COVID 19 Surveillance Prevention Prediction and Diagnosis

Computational Intelligence Methods in COVID 19  Surveillance  Prevention  Prediction and Diagnosis Book
Author : Khalid Raza
Publisher : Springer Nature
Release : 2020-10-16
ISBN : 9811585342
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The novel coronavirus disease 2019 (COVID-19) pandemic has posed a major threat to human life and health. This book is beneficial for interdisciplinary students, researchers, and professionals to understand COVID-19 and how computational intelligence can be used for the purpose of surveillance, control, prevention, prediction, diagnosis, and potential treatment of the disease. The book contains different aspects of COVID-19 that includes fundamental knowledge, epidemic forecast models, surveillance and tracking systems, IoT- and IoMT-based integrated systems for COVID-19, social network analysis systems for COVID-19, radiological images (CT, X-ray) based diagnosis system, and computational intelligence and in silico drug design and drug repurposing methods against COVID-19 patients. The contributing authors of this volume are experts in their fields and they are from various reputed universities and institutions across the world. This volume is a valuable and comprehensive resource for computer and data scientists, epidemiologists, radiologists, doctors, clinicians, pharmaceutical professionals, along with graduate and research students of interdisciplinary and multidisciplinary sciences.

Biomedical Signal Processing and Artificial Intelligence in Healthcare

Biomedical Signal Processing and Artificial Intelligence in Healthcare Book
Author : Walid A. Zgallai
Publisher : Academic Press
Release : 2020-07-29
ISBN : 0128189479
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving. Dr Zgallai’s book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academics in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key ‘up-and-coming’ academics across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence. Contributions by recognized researchers and field leaders. On-line presentations, tutorials, application and algorithm examples.

Bio inspired Physiological Signal s and Medical Image s Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio Engineering Applications in Medical and Industrial Fields

Bio inspired Physiological Signal s  and Medical Image s  Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio Engineering Applications in Medical and Industrial Fields Book
Author : Francesco Rundo,Giuseppe Luigi Banna,Concetto Spampinato,Sabrina Conoci
Publisher : Frontiers Media SA
Release : 2021-12-31
ISBN : 2889719162
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download Bio inspired Physiological Signal s and Medical Image s Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio Engineering Applications in Medical and Industrial Fields book written by Francesco Rundo,Giuseppe Luigi Banna,Concetto Spampinato,Sabrina Conoci, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Signal Processing and Machine Learning for Biomedical Big Data

Signal Processing and Machine Learning for Biomedical Big Data Book
Author : Ervin Sejdic,Tiago H. Falk
Publisher : CRC Press
Release : 2018
ISBN : 9781498773454
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book's material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.

Signal Processing in Medicine and Biology

Signal Processing in Medicine and Biology Book
Author : Iyad Obeid,Ivan Selesnick,Joseph Picone
Publisher : Springer Nature
Release : 2020-03-16
ISBN : 3030368440
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson’s; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.

Advanced Intelligent Systems for Sustainable Development AI2SD 2020

Advanced Intelligent Systems for Sustainable Development  AI2SD 2020  Book
Author : Janusz Kacprzyk
Publisher : Springer Nature
Release : 2022
ISBN : 3030906396
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book publishes the best papers accepted and presented at the 3rd edition of the International Conference on Advanced Intelligent Systems for Sustainable Development Applied to Agriculture, Energy, Health, Environment, Industry, Education, Economy, and Security (AI2SD2020). This conference is one of the biggest amalgamations of eminent researchers, students, and delegates from both academia and industry where the collaborators have an interactive access to emerging technology and approaches globally. In this book, readers find the latest ideas addressing technological issues relevant to all areas of the social and human sciences for sustainable development. Due to the nature of the conference with its focus on innovative ideas and developments, the book provides the ideal scientific and brings together very high-quality chapters written by eminent researchers from different disciplines, to discover the most recent developments in scientific research.

Advances in Data Computing Communication and Security

Advances in Data Computing  Communication and Security Book
Author : Pankaj Verma,Chhagan Charan,Xavier Fernando,Subramaniam Ganesan
Publisher : Springer Nature
Release : 2022-03-28
ISBN : 9811684030
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book is a collection of high-quality peer reviewed contributions from the academicians, researchers, practitioners, and industry professionals, accepted in the International Conference on Advances in Data Computing, Communication and Security (I3CS2021) organized by the Department of Electronics and Communication Engineering in collaboration with the Department of Computer Engineering, National Institute of Technology, Kurukshetra, India during 08-10 Sep 2021. The fast pace of advancing technologies and growing expectations of the next-generation requires that the researchers must continuously reinvent themselves through new investigations and development of the new products. The theme of this conference is devised as "Embracing Innovations" for the next-generation data computing and secure communication system.

Classification and Clustering in Biomedical Signal Processing

Classification and Clustering in Biomedical Signal Processing Book
Author : Dey, Nilanjan
Publisher : IGI Global
Release : 2016-04-07
ISBN : 152250141X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.