Skip to main content

Ihorizon Enabled Energy Management For Electrified Vehicles

In Order to Read Online or Download Ihorizon Enabled Energy Management For Electrified Vehicles Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

iHorizon Enabled Energy Management for Electrified Vehicles

iHorizon Enabled Energy Management for Electrified Vehicles Book
Author : Clara Marina Martinez,Dongpu Cao
Publisher : Butterworth-Heinemann
Release : 2018-09-11
ISBN : 0128150114
Language : En, Es, Fr & De

GET BOOK

Book Description :

iHorizon-Enabled Energy Management for Electrified Vehicles proposes a realistic solution that assumes only scarce information is available prior to the start of a journey and that limited computational capability can be allocated for energy management. This type of framework exploits the available resources and closely emulates optimal results that are generated with an offline global optimal algorithm. In addition, the authors consider the present and future of the automotive industry and the move towards increasing levels of automation. Driver vehicle-infrastructure is integrated to address the high level of interdependence of hybrid powertrains and to comply with connected vehicle infrastructure. This book targets upper-division undergraduate students and graduate students interested in control applied to the automotive sector, including electrified powertrains, ADAS features, and vehicle automation. Addresses the level of integration of electrified powertrains Presents the state-of-the-art of electrified vehicle energy control Offers a novel concept able to perform dynamic speed profile and energy demand prediction

Reinforcement Learning Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Reinforcement Learning Enabled Intelligent Energy Management for Hybrid Electric Vehicles Book
Author : Teng Liu
Publisher : Morgan & Claypool Publishers
Release : 2019-09-03
ISBN : 1681736195
Language : En, Es, Fr & De

GET BOOK

Book Description :

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.

Design Analysis and Applications of Renewable Energy Systems

Design  Analysis and Applications of Renewable Energy Systems Book
Author : Ahmad Taher Azar,Nashwa Ahmad Kamal
Publisher : Academic Press
Release : 2021-09-09
ISBN : 0323859917
Language : En, Es, Fr & De

GET BOOK

Book Description :

Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods Includes new circuits and systems, helping researchers solve many nonlinear problems

Cyber Physical Vehicle Systems

Cyber Physical Vehicle Systems Book
Author : Chen Lv,Yang Xing,Junzhi Zhang,Dongpu Cao
Publisher : Morgan & Claypool Publishers
Release : 2020-01-17
ISBN : 1681737329
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber physical vehicle systems.