Skip to main content

Identifying Ignitable Liquids In Fire Debris

In Order to Read Online or Download Identifying Ignitable Liquids In Fire Debris Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Identifying Ignitable Liquids in Fire Debris

Identifying Ignitable Liquids in Fire Debris Book
Author : Jeanet Hendrikse,Michiel Grutters,Frank Schäfer
Publisher : Academic Press
Release : 2015-10-05
ISBN : 0128043873
Language : En, Es, Fr & De

GET BOOK

Book Description :

Identifying Ignitable Liquids in Fire Debris: A Guideline for Forensic Experts discusses and illustrates the characteristics of different ignitable liquid products. This guideline builds on the minimum criteria of the ignitable liquid classes defined in the internationally accepted standard ASTM E1618 Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. The volume provides information on the origin of the characteristics of these ignitable liquid products and provides a summary of characteristics to demonstrate a positive identification of the particular product class. Topics such as the term ignitable liquid, relevant guidelines for fire debris analysis, production processes of ignitable liquids, fire debris analysis methods, and interferences in fire debris analysis, are briefly discussed as these topics are essential for the understanding of the identification and classification of ignitable liquid residues in fire debris. Discusses the characteristics and variations in chemical composition of different classes of the ignitable liquid products defined by ASTM E1618:14 Covers the General Production Processes of Ignitable Liquid Products Includes a guide for the Identification of Ignitable Liquids in Fire Debris

Statistical Assessment of the Probability of Correct Identification of Ignitable Liquids in Fire Debris Analysis

Statistical Assessment of the Probability of Correct Identification of Ignitable Liquids in Fire Debris Analysis Book
Author : United States. Department of Justice,Mary Williams,Erin Waddell
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Identification of ignitable liquid residues in the presence of background interferences, especially those arising from pyrolysis processes, is a major challenge for the fire debris analyst. The proposed research will lead to a mathematical model that allows for the detection of an ignitable liquid in a fire debris sample and the classification of the ignitable liquid according to the ASTM E1618 classification scheme. The research will examine the influence of substrate pyrolysis and non-pyrolysis interferences on: (1) probability of correct prediction of the presence of an ignitable liquid in real and simulated fire debris samples (Type I and Type II error rates) and (2) probability of correct prediction of the associated ignitable liquid ASTM class and sub-class (heavy, medium or light) in positive samples. Potential alternative sub-groupings of ignitable liquids will be examined based on cluster analysis techniques. Models will be examined which are based on principal components analysis (PCA), linear discriminant analysis (LDA) and soft independent model classification analogy (SIMCA). The model will be developed from the summed ion spectra of nearly 500 ignitable liquid and 50 pyrolysis sample GC-MS data sets with ANOVA-assisted variable selection. Training data sets will be taken from the National Center for Forensic Science ignitable liquid and substrate pyrolysis databases. Simulated fire debris samples generated in the laboratory and samples from large-scale burns will also be employed in model testing. Model performance will be statistically evaluated by receiver operator characteristic analysis. The final model will be implemented in a software solution for forensic laboratory use. This project proposed to investigate the development of a method for classifying fire debris GC-MS data sets as: (1) containing or not containing an ignitable liquid, (2) classifying any ignitable liquid that may be present under the ASTM E1618 classification scheme and (3) estimating the statistical certainty of the answers to questions 1 and 2. The proposed approach is to build a mathematical model that can correctly classify GC-MS data from ignitable liquids and pyrolyzed substrates (wood, plastic, etc.). The model will then be applied to GC-MS data from laboratory-generated fire debris samples, as well as ignitable liquids and substrates that were not used to build the model. The classification success of the model will allow a determination of the statistical performance of the model by ROC analysis. The model will be developed based on the total ion spectrum, which has already shown a propensity for classifying a set of ignitable liquids drawn from multiple ASTM classes.

Determining the Presence of an Ignitable Liquid Residue in Fire Debris Samples Utilizing Target Factor Analysis

Determining the Presence of an Ignitable Liquid Residue in Fire Debris Samples Utilizing Target Factor Analysis Book
Author : Kelly M. McHugh
Publisher : Unknown
Release : 2010
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Current fire debris analysis procedure involves using the chromatographic patterns of total ion chromatograms, extracted ion chromatograms, and target compound analysis to identify an ignitable liquid according to the American Society for Testing and Materials (ASTM) E 1618 standard method. Classifying the ignitable liquid is accomplished by a visual comparison of chromatographic data obtained from any extracted ignitable liquid residue in the debris to the chromatograms of ignitable liquids in a database, i.e. by visual pattern recognition. Pattern recognition proves time consuming and introduces potential for human error. One particularly difficult aspect of fire debris analysis is recognizing an ignitable liquid residue when the intensity of its chromatographic pattern is extremely low or masked by pyrolysis products. In this research, a unique approach to fire debris analysis was applied by utilizing the samples' total ion spectrum (TIS) to identify an ignitable liquid, if present. The TIS, created by summing the intensity of each ion across all elution times in a gas chromatography-mass spectrometry (GC-MS) dataset retains sufficient information content for the identification of complex mixtures . Computer assisted spectral comparison was then performed on the samples' TIS by target factor analysis (TFA). This approach allowed rapid automated searching against a library of ignitable liquid summed ion spectra. Receiver operating characteristic (ROC) curves measured how well TFA identified ignitable liquids in the database that were of the same ASTM classification as the ignitable liquid in fire debris samples, as depicted in their corresponding area under the ROC curve. This study incorporated statistical analysis to aid in classification of an ignitable liquid, therefore alleviating interpretive error inherent in visual pattern recognition. This method could allow an analyst to declare an ignitable liquid present when utilization of visual pattern recognition alone is not sufficient.

Fire Debris Analysis

Fire Debris Analysis Book
Author : Eric Stauffer,Julia A. Dolan,Reta Newman
Publisher : Academic Press
Release : 2007-12-10
ISBN : 9780080556260
Language : En, Es, Fr & De

GET BOOK

Book Description :

The study of fire debris analysis is vital to the function of all fire investigations, and, as such, Fire Debris Analysis is an essential resource for fire investigators. The present methods of analysis include the use of gas chromatography and gas chromatography-mass spectrometry, techniques which are well established and used by crime laboratories throughout the world. However, despite their universality, this is the first comprehensive resource that addresses their application to fire debris analysis. Fire Debris Analysis covers topics such as the physics and chemistry of fire and liquid fuels, the interpretation of data obtained from fire debris, and the future of the subject. Its cutting-edge material and experienced author team distinguishes this book as a quality reference that should be on the shelves of all crime laboratories. Serves as a comprehensive guide to the science of fire debris analysis Presents both basic and advanced concepts in an easily readable, logical sequence Includes a full-color insert with figures that illustrate key concepts discussed in the text

Application of Chemometrics and Fast GC MS Analysis for the Identification of Ignitable Liquids in Fire Debris Samples

Application of Chemometrics and Fast GC MS Analysis for the Identification of Ignitable Liquids in Fire Debris Samples Book
Author : Michael E. Sigman,Mary Williams
Publisher : Unknown
Release : 2012
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The goal of the research conducted under this grant was to develop a chemometric method of data analysis that would facilitate the identification of GC-MS patterns associated with ignitable liquid classes, as designated under ASTM E 1618-10. The objective of the research was to develop a data analysis method that would classify ignitable liquid residue in the presence of background interferences found in fire debris. Pattern recognition and classification methods available at the onset of this research did not explicitly take into account background interference issues. A novel method was developed under this research to classify ignitable liquid residues into the ASTM classes, even in the presence of a strong background signal, without a priori knowledge of the background signature. The method makes use of target factor analysis (TFA) in combination with Bayesian decision theory. The use of Bayesian decision theory provides results in the form of posterior probabilities that a set of samples from a fire scene contain an ignitable liquid of a specific ASTM class. Error rates are not currently available for fire debris analysis, other than extrapolations from proficiency tests. The method was further refined by introducing a sensitivity parameter which made the method very conservative in its predictions, and gave a true "soft" classifier. Soft classifiers allow classification of a sample into multiple classes and afford the possibility of not assigning the sample to any of the available classes. In order to achieve the goals, this work was broken down into three tasks.

Forensic Analysis of Ignitable Liquids in Fire Debris by Comprehensive Two Dimensional Gas Chromatography

Forensic Analysis of Ignitable Liquids in Fire Debris by Comprehensive Two Dimensional Gas Chromatography Book
Author : GS. Frysinger,RB. Gaines
Publisher : Unknown
Release : 2002
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The application of comprehensive two-dimensional gas chromatography (GC × GC) for the forensic analysis of ignitable liquids in fire debris is reported. GC × GC is a high resolution, multidimensional gas chromatographic method in which each component of a complex mixture is subjected to two independent chromatographic separations. The high resolving power of GC × GC can separate hundreds of chemical components from a complex fire debris extract. The GC × GC chromatogram is a multicolor plot of two-dimensional retention time and detector signal intensity that is well suited for rapid identification and fingerprinting of ignitable liquids. GC × GC chromatograms were used to identify and classify ignitable liquids, detect minor differences between similar ignitable liquids, track the chemical changes associated with weathering, characterize the chemical composition of fire debris pyrolysates, and detect weathered ignitable liquids against a background of fire debris pyrolysates.

The Identification of Ignitable Liquids in the Presence of Pyrolysis Products

The Identification of Ignitable Liquids in the Presence of Pyrolysis Products Book
Author : Joseph Castelbuono
Publisher : Unknown
Release : 2008
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The fire debris analyst is often faced with the complex problem of identifying ignitable liquid residues in the presence of products produced from pyrolysis and incomplete combustion of common building and furnishing materials. The purpose of this research is to investigate a modified destructive distillation methodology provided by the Florida Bureau of Forensic Fire and Explosive Analysis to produce interfering product chromatographic patterns similar to those observed in fire debris case work. The volatile products generated during heating of substrate materials are extracted from the fire debris by passive headspace adsorption and subsequently analyzed by GC-MS. Low density polyethylene (LDPE) is utilized to optimize the modified destructive distillation method to produce the interfering products commonly seen in fire debris. The substrates examined in this research include flooring and construction materials along with a variety of materials commonly analyzed by fire debris analysts. These substrates are also burned in the presence of a variety of ignitable liquids. Comparisons of ignitable liquids, pyrolysis products, and products from pyrolysis in the presence of an ignitable liquid are performed by comparing the summed ion spectra from the GC-MS data. Pearson correlation was used to determine if substrates could be discriminated from one another. A pyrolysis products database and GC-MS database software based on comparison of summed ion spectra are shown to be useful tools for the evaluation of fire debris.

Review of GC MS Guide to Ignitable Liquids

Review of GC MS Guide to Ignitable Liquids Book
Author : ML. Fultz
Publisher : Unknown
Release : 1999
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

It is rare to find a book published for forensic examiners who perfoim fire debris analysis. This book addresses two issues for those involved in the identification of ignitable liquids recovered from fire debris; first, the increased availability of "speciality solvents" which do not fall into the five main categories of more familiar and easily recognizable ignitable liquids and, second, the increased use of mass spectrometry for the identification of ignitable liquids.

GC MS Guide to Ignitable Liquids

GC MS Guide to Ignitable Liquids Book
Author : Reta Newman,Michael W. Gilbert,Kevin Lothridge
Publisher : CRC-Press
Release : 1997-11-30
ISBN : 9780849331077
Language : En, Es, Fr & De

GET BOOK

Book Description :

The rapidly increasing number of different ignitable liquid formulations available today poses a new challenge to fire debris analysts and other forensic chemistry specialists -- that of accurately identifying and classifying ignitable liquids with unfamiliar chromatographic patterns. GC-MS Guide to Ignitable Liquids addresses that challenge with a selection of more than 100 different ignitable liquid formulations designed to supplement the laboratory's standard collection. Both total ion chromatograms and extracted ion chromatograms (mass chromatograms) are included. Written by authors who are also experienced forensic chemists, this complete reference is the only single source of information on ignitable liquids - a must for students of fire science, forensic chemists, and anyone conducting fire debris analysis.

Chemometric Applications to a Complex Classification Problem

Chemometric Applications to a Complex Classification Problem Book
Author : Erin Elizabeth Waddell
Publisher : Unknown
Release : 2013
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Fire debris analysis currently relies on visual pattern recognition of the total ion chromatograms, extracted ion profiles, and target compound chromatograms to identify the presence of an ignitable liquid. This procedure is described in the ASTM International E1618-10 standard method. For large data sets, this methodology can be time consuming and is a subjective method, the accuracy of which is dependent upon the skill and experience of the analyst. This research aimed to develop an automated classification method for large data sets and investigated the use of the total ion spectrum (TIS). The TIS is calculated by taking an average mass spectrum across the entire chromatographic range and has been shown to contain sufficient information content for the identification of ignitable liquids. The TIS of ignitable liquids and substrates were compiled into model data sets. Substrates are defined as common building materials and household furnishings that are typically found at the scene of a fire and are, therefore, present in fire debris samples. Fire debris samples were also used which were obtained from laboratory-scale and large-scale burns. An automated classification method was developed using computational software, that was written in-house. Within this method, a multi-step classification scheme was used to detect ignitable liquid residues in fire debris samples and assign these to the classes defined in ASTM E1618-10. Classifications were made using linear discriminant analysis, quadratic discriminant analysis (QDA), and soft independent modeling of class analogy (SIMCA). The model data sets were tested by cross-validation and used to classify fire debris samples. Correct classification rates were calculated for each data set. Classifier performance metrics were also calculated for the first step of the classification scheme which included false positive rates, true positive rates, and the precision of the method. The first step, which determines a sample to be positive or negative for ignitable liquid residue, is arguably the most important in the forensic application. Overall, the highest correct classification rates were achieved using QDA for the first step of the scheme and SIMCA for the remaining steps. In the first step of the classification scheme, correct classification rates of 95.3% and 89.2% were obtained using QDA to classify the cross-validation test set and fire debris samples, respectively. For this step, the cross-validation test set resulted in a true positive rate of 96.2%, a false positive rate of 9.3%, and a precision of 98.2%. The fire debris data set had a true positive rate of 82.9%, a false positive rate of 1.3%, and a precision of 99.0%. Correct classifications rates of 100% were achieved for both data sets in the majority of the remaining steps which used SIMCA for classification. The lowest correct classification rate, 69.2%, was obtained for the fire debris samples in one of the final steps in the classification scheme. In this research, the first statistically valid error rates for fire debris analysis have been developed through cross-validation of large data sets. The fire debris analyst can use the automated method as a tool for detecting and classifying ignitable liquid residues in fire debris samples. The error rates reduce the subjectivity associated with the current methods and provide a level of confidence in sample classification that does not currently exist in forensic fire debris analysis.

The Application of Chemometrics to the Detection and Classification of Ignitable Liquids in Fire Debris Using the Total Ion Spectrum

The Application of Chemometrics to the Detection and Classification of Ignitable Liquids in Fire Debris Using the Total Ion Spectrum Book
Author : Jennifer N. Lewis
Publisher : Unknown
Release : 2011
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Current methods in ignitable liquid identification and classification from fire debris rely on pattern recognition of ignitable liquids in total ion chromatograms, extracted ion profiles, and target compound comparisons, as described in American Standards for Testing and Materials E1618-10. The total ion spectra method takes advantage of the reproducibility among sample spectra from the same American Society for Testing and Materials class. It is a method that is independent of the chromatographic conditions that affect retention times of target compounds, thus aiding in the use of computer-based library searching techniques. The total ion spectrum was obtained by summing the ion intensities across all retention times. The total ion spectrum from multiple fire debris samples were combined for target factor analysis. Principal components analysis allowed the dimensions of the data matrix to be reduced prior to target factor analysis, and the number of principal components retained was based on the determination of rank by median absolute deviation. The latent variables were rotated to find new vectors (resultant vectors) that were the best possible match to spectra in a reference library of over 450 ignitable liquid spectra (test factors). The Pearson correlation between target factors and resultant vectors were used to rank the ignitable liquids in the library. Ignitable liquids with the highest correlation represented possible contributions to the sample. Posterior probabilities for the ASTM ignitable liquid classes were calculated based on the probability distribution function of the correlation values. The ASTM ignitable liquid class present in the sample set was identified based on the class with the highest posterior probability value. Tests included computer simulations of artificially generated total ion spectra from a combination of ignitable liquid and substrate spectra, as well as large scale burns in 20'x8'x8' containers complete with furnishings and flooring. Computer simulations were performed for each ASTM ignitable liquid class across a range of parameters. Of the total number of total ion spectra in a data set, the percentage of samples containing an ignitable liquid was varied, as well as the percent of ignitable liquid contribution in a given total ion spectrum. Target factor analysis was them performed on the computer-generated sample set. The correlation values from target factor analysis were used to calculate posterior probabilities for each ASTM ignitable liquid class. Large scale burns were designed to test the detection capabilities of the chemometric approach to ignitable liquid detection under conditions similar to those of a structure fire. Burn conditions were controlled by adjusting the type and volume of ignitable liquid used, the fuel load, ventilation, and the elapsed time of the burn. Samples collected from the large scale burns were analyzed using passive headspace adsorption with activated charcoal strips and carbon disulfide desorption of volatiles for analysis using gas chromatography-mass spectrometry.

Kinetically Modeling Total Ion Chromatograms and Extracted Ion Profiles to Identify Ignitable Liquids for Fire Debris Applications

Kinetically Modeling Total Ion Chromatograms and Extracted Ion Profiles to Identify Ignitable Liquids for Fire Debris Applications Book
Author : Briana Ashley Capistran
Publisher : Unknown
Release : 2020
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Identification of ignitable liquids in fire debris samples is typically conducted via comparison of total ion chromatograms (TICs) of such samples to reference collections containing chromatograms of common liquids. Due to the extent of liquid evaporation in fires, reference collections often contain TICs of ignitable liquids that have been experimentally evaporated to various levels; however, such evaporations can be time intensive. A kinetic model was developed to predict evaporation rate constants of compounds as a function of GC retention index. The model can be applied to predict chromatograms of ignitable liquids at any evaporation level, alleviating the need to perform experimental evaporations. Previous work demonstrated good predictive accuracy of the model for petroleum distillate liquids and gasoline.In this work, the kinetic model was applied to ignitable liquids of the isoparaffinic, naphthenic-paraffinic, and aromatic ASTM classes. Predicted extracted ion profiles (EIPs) were generated in addition to TICs for each liquid, and good predictive accuracy of the model was demonstrated with PPMC coefficients as high as 0.9983. Reference collections containing predicted TICs and EIPs were generated. The TICs and EIPs of single-blind samples and large-scale burn samples were compared to the reference collections; in all cases, the correct ASTM liquid class was identified. Use of the EIP reference collection for the burn samples resulted in higher correlation compared to the TIC collection due to reduced substrate interferences. Overall, this work demonstrates the utility of a kinetic model for generating predicted reference collections as a tool in the identification of ignitable liquids for fire debris applications.

Simulation of Fire Debris for the Training of Chemometric Models for the Identification of Ignitable Liquids

Simulation of Fire Debris for the Training of Chemometric Models for the Identification of Ignitable Liquids Book
Author : Xiao Qin Lee
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Arson is one of the most challenging crimes for forensic scientists to investigate. The variability in the composition of ignitable liquids, including changes in chemical composition during and after the fire, and the presence of pyrolysis products generated from burning substrates yields a very complex mixture of volatile compounds in samples of fire debris. Headspace extraction of debris samples followed by gas chromatography-mass spectrometry (GC-MS) is the most common approach for fire investigation. For many laboratories, data interpretation is the bottleneck in the workflow, consuming an inordinate amount of analyst time. It is also a process that is highly dependent on the experience and skill of analysts which gives rise to subjective results. Chemometrics offers an alternative to manual data interpretation. However, for this work to be applicable in real-world fire investigations, the chemometric model must be able to classify all major classes of ignitable liquids that can be possibly found in a fire. Construction of a chemometric model requires abundant casework data. This is this not a problem for gasoline, which is the most commonly used ignitable liquid, but it is a challenge for other ILs. The lengthy time needed for the collection of casework debris containing other ILs for the model construction limits the practical use of this work. Therefore, it would be a great benefit if models applicable to casework samples could be generated based on simulated debris profiles. An established debris simulation protocol has been shown to be effective in generating realistic debris for training human analysts. This thesis evaluates the applicability of this simulation protocol for generating debris that are chemometrically identical to casework debris. It was discovered that models trained on the simulated debris were not applicable to casework samples without a significant loss in the accuracy of the model. It was established that the reason for the inadequacy of the simulated debris was that it did not contain sufficient C2-alkyl benzenes and non-aromatic hydrocarbons. Consequently these features which are not characteristic of gasoline were selected by the chemometric model and model quality degraded for real samples. Thus research turned to a study of the effects of temperature on the pyrolysis of household materials, mainly flooring and roofing materials, at temperatures above 400 °C. I was particularly interested in finding conditions that will generate additional BTEX and aliphatic hydrocarbons, which were generally lacking in debris pyrolyzed at 400 °C with the established simulation method.

A Study of the Effects of a Micelle Encapsulator Fire Suppression Agent on Dynamic Headspace Analysis of Fire Debris Samples

A Study of the Effects of a Micelle Encapsulator Fire Suppression Agent on Dynamic Headspace Analysis of Fire Debris Samples Book
Author : E. McGee,TL. Lang
Publisher : Unknown
Release : 2002
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The effects of a Micelle Encapsulator Fire Suppression Agent (F-500, Hazard Control Technologies Inc., Fayetteville, Georgia) on the routine analysis of fire debris samples by Gas Chromatography (GC) were studied. When mixed with water the product can be used in the suppression of Class A and Class B fires. Laboratory tests were performed to determine whether or not the product has any effect on the analysis for ignitable liquids by GC, in particular for gasoline, medium petroleum distillates, and heavy petroleum distillates. Test burns were suppressed using either the micelle encapsulator or water and samples collected from these burns were analyzed. The results of analysis show that use of the micelle encapsulator at a fire scene may affect the chromatographic data obtained from samples collected by the investigator. However, the effect does not prevent the identification of common ignitable liquids in fire debris samples.

The Use of Individual Extracted Ion Profiles Versus Summed Extracted Ion Profiles in Fire Debris Analysis

The Use of Individual Extracted Ion Profiles Versus Summed Extracted Ion Profiles in Fire Debris Analysis Book
Author : MW. Gilbert
Publisher : Unknown
Release : 1998
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Mass spectrometry has become commonplace in the area of forensic fire debris analysis. The use of extracted ion chromatography can assist the fire debris analyst in distinguishing an ignitable liquid from interference due to pyrolysis or other contaminants. Often the individual extracted ion chromatograms are added together to give a profile of a specific class of compounds. Occasionally, the summed ion profile is still too complex to allow the identification of an ignitable liquid. In these instances, the individual ion profiles can be of better use. An example of the use of individual ion profiles versus summed ion profiles to identify an ignitable liquid in an actual case is presented.

Forensic Analysis of Fire Debris and Explosives

Forensic Analysis of Fire Debris and Explosives Book
Author : Kenyon Evans-Nguyen,Katherine Hutches
Publisher : Springer Nature
Release : 2019-10-08
ISBN : 3030258343
Language : En, Es, Fr & De

GET BOOK

Book Description :

This text provides training on the fundamental tools and methodologies used in active forensic laboratories for the complicated analysis of fire debris and explosives evidence. It is intended to serve as a gateway for students and transitioning forensic science or chemistry professionals. The book is divided between the two disciplines of fire debris and explosives, with a final pair of chapters devoted to the interplay between the two disciplines and with other disciplines, such as DNA and fingerprint analysis. It brings together a multi-national group of technical experts, ranging from academic researchers to active practitioners, including members of some of the premier forensic agencies of the world. Readers will gain knowledge of practical methods of analysis and will develop a strong foundation for laboratory work in forensic chemistry. End-of-chapter questions based on relevant topics and real-world data provide a realistic arena for learners to test newly-acquired techniques.

Fire Investigation

Fire Investigation Book
Author : Niamh Nic Daeid
Publisher : CRC Press
Release : 2004-01-27
ISBN : 0203646959
Language : En, Es, Fr & De

GET BOOK

Book Description :

Fire Investigation covers the concepts and theories used to determine a specfic fire has been deliberately or accidentally set. The author clearly explains the concepts needed to gain insight into a fire scene investigation, including the dynamics of the fire, the necessary conditions for a fire to start and be maintained, the different types of co

The Evaluation of Classifier Performance on the Forensic Analysis of Fire Debris and the Expansion of the Substrate Database

The Evaluation of Classifier Performance on the Forensic Analysis of Fire Debris and the Expansion of the Substrate Database Book
Author : Alyssa Nicole Allen
Publisher : Unknown
Release : 2019
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The current protocols in fire debris analysis rely on ignitable liquid pattern recognition and the identification of target compounds. These practices allow fire debris analysts to determine whether a sample contains or is absent of ignitable liquid residue and to classify that type of ignitable liquid based upon subjective thresholds.

Gas Chromatography

Gas Chromatography Book
Author : Colin Poole
Publisher : Elsevier
Release : 2012-07-26
ISBN : 0123855411
Language : En, Es, Fr & De

GET BOOK

Book Description :

This title provides comprehensive coverage of modern gas chromatography including theory, instrumentation, columns, and applications addressing the needs of advanced students and professional scientists in industry and government laboratories. Chapters are written by recognized experts on each topic. Each chapter offers a complete picture with respect to its topic so researchers can move straight to the information they need without reading through a lot of background information. Individual chapters written by recognized experts The big picture of gas chromatography from theory, to methods, to selected applications Provides references to other sources in associated areas of study to facilitate research Gives access to core data for practical work, comparison of results and decision making

Quality Management in Forensic Science

Quality Management in Forensic Science Book
Author : Sean Doyle
Publisher : Academic Press
Release : 2018-11-20
ISBN : 0128094249
Language : En, Es, Fr & De

GET BOOK

Book Description :

Forensic science has been under scrutiny for some time, since the release of the NAS report in 2009. The report cited the need for standardized practices and the accreditation of crime labs. No longer can the forensic community take the position that cross-examination in a courtroom will expose weaknesses in methodology and execution. Quality Management in Forensic Science covers a wide spectrum of forensic disciplines, relevant ISO and non-ISO standards, accreditation and quality management systems necessary in any forensic science laboratory. Written by a globally well-respected forensic scientist with decades of experience in the forensic science laboratory and on the stand, as an expert witness who is also a Fellow of both the Royal Society of Chemistry and the Chartered Society of Forensic Sciences. This book will be a must-have resource for all forensic science stakeholders, particularly law enforcement agents and lawyers less familiar with the impact of quality management on the reliability of scientific evidence. A comprehensive, multidisciplinary reference of scientific practices for use in the forensic laboratory Coverage from DNA to toxicology, from trace evidence to crime scene and beyond Extensive review of ISO and non-ISO standards, accreditation, QMS and much more Written by a foremost forensic scientist with decades of experience in the laboratory and as an expert witness