Skip to main content

Hierarchical Modeling And Inference In Ecology

Download Hierarchical Modeling And Inference In Ecology Full eBooks in PDF, EPUB, and kindle. Hierarchical Modeling And Inference In Ecology is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology Book
Author : J. Andrew Royle,Robert M. Dorazio
Publisher : Academic Press
Release : 2008
ISBN : 9780123740977
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics * Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) * Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis * Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS * Computing support in technical appendices in an online companion web site

Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology Book
Author : J. Andrew Royle,Robert M. Dorazio
Publisher : Elsevier
Release : 2008-10-15
ISBN : 0080559255
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics * Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) * Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis * Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS * Computing support in technical appendices in an online companion web site

Applied Hierarchical Modeling in Ecology Analysis of distribution abundance and species richness in R and BUGS

Applied Hierarchical Modeling in Ecology  Analysis of distribution  abundance and species richness in R and BUGS Book
Author : Marc Kery,J. Andrew Royle
Publisher : Academic Press
Release : 2015-11-14
ISBN : 0128014865
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Applied Hierarchical Modeling in Ecology: Distribution, Abundance, Species Richness offers a new synthesis of the state-of-the-art of hierarchical models for plant and animal distribution, abundance, and community characteristics such as species richness using data collected in metapopulation designs. These types of data are extremely widespread in ecology and its applications in such areas as biodiversity monitoring and fisheries and wildlife management. This first volume explains static models/procedures in the context of hierarchical models that collectively represent a unified approach to ecological research, taking the reader from design, through data collection, and into analyses using a very powerful class of models. Applied Hierarchical Modeling in Ecology, Volume 1 serves as an indispensable manual for practicing field biologists, and as a graduate-level text for students in ecology, conservation biology, fisheries/wildlife management, and related fields. Provides a synthesis of important classes of models about distribution, abundance, and species richness while accommodating imperfect detection Presents models and methods for identifying unmarked individuals and species Written in a step-by-step approach accessible to non-statisticians and provides fully worked examples that serve as a template for readers' analyses Includes companion website containing data sets, code, solutions to exercises, and further information

Introduction to Hierarchical Bayesian Modeling for Ecological Data

Introduction to Hierarchical Bayesian Modeling for Ecological Data Book
Author : Eric Parent,Etienne Rivot
Publisher : CRC Press
Release : 2012-08-21
ISBN : 1584889195
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website. This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.

Applied Hierarchical Modeling in Ecology Analysis of Distribution Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology  Analysis of Distribution  Abundance and Species Richness in R and BUGS Book
Author : Marc Kery,J. Andrew Royle
Publisher : Academic Press
Release : 2020-10-10
ISBN : 0128097272
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Volume Two: Dynamic and Advanced Models provides a synthesis of the state-of-the-art in hierarchical models for plant and animal distribution, also focusing on the complex and more advanced models currently available. The book explains all procedures in the context of hierarchical models that represent a unified approach to ecological research, thus taking the reader from design, through data collection, and into analyses using a very powerful way of synthesizing data. Makes ecological modeling accessible to people who are struggling to use complex or advanced modeling programs Synthesizes current ecological models and explains how they are inter-connected Contains numerous examples throughout the book, walking the reading through scenarios with both real and simulated data Provides an ideal resource for ecologists working in R software and in BUGS software for more flexible Bayesian analyses

Bayesian Models

Bayesian Models Book
Author : N. Thompson Hobbs,Mevin Hooten
Publisher : Princeton University Press
Release : 2015-08-04
ISBN : 1400866553
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models

Integrated Population Models

Integrated Population Models Book
Author : Michael Schaub,Marc Kery
Publisher : Academic Press
Release : 2021-11-23
ISBN : 0128209151
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. Offers practical and accessible ecological applications of IPMs (integrated population models) Provides full documentation of analyzed code in the Bayesian framework Written and structured for an easy approach to the subject, especially for non-statisticians

Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data Book
Author : Sudipto Banerjee
Publisher : CRC Press
Release : 2003-12-17
ISBN : 020348780X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,

Bayesian Inference

Bayesian Inference Book
Author : William A Link,Richard J Barker
Publisher : Academic Press
Release : 2009-08-07
ISBN : 0080889808
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analytical software and examples Leading authors with world-class reputations in ecology and biostatistics

Bayesian Data Analysis in Ecology Using Linear Models with R BUGS and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R  BUGS  and Stan Book
Author : Franzi Korner-Nievergelt,Tobias Roth,Stefanie von Felten,Jérôme Guélat,Bettina Almasi,Pius Korner-Nievergelt
Publisher : Academic Press
Release : 2015-04-04
ISBN : 0128016787
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest Written in a step-by-step approach that allows for eased understanding by non-statisticians Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data All example data as well as additional functions are provided in the R-package blmeco

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology Book
Author : Ruth King,Byron Morgan,Olivier Gimenez,Steve Brooks
Publisher : CRC Press
Release : 2009-10-30
ISBN : 9781439811887
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Novel Statistical Tools for Conserving and Managing PopulationsBy gathering information on key demographic parameters, scientists can often predict how populations will develop in the future and relate these parameters to external influences, such as global warming. Because of their ability to easily incorporate random effects, fit state-space mode

Spatial Capture Recapture

Spatial Capture Recapture Book
Author : J. Andrew Royle,Richard B. Chandler,Rahel Sollmann,Beth Gardner
Publisher : Academic Press
Release : 2013-08-27
ISBN : 012407152X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. Comprehensive reference on revolutionary new methods in ecology makes this the first and only book on the topic Every methodological element has a detailed worked example with a code template, allowing you to learn by example Includes an R package that contains all computer code and data sets on companion website

Hierarchical Modelling for the Environmental Sciences

Hierarchical Modelling for the Environmental Sciences Book
Author : James Samuel Clark,Alan E. Gelfand
Publisher : Oxford University Press on Demand
Release : 2006
ISBN : 019856967X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

Joint Species Distribution Modelling

Joint Species Distribution Modelling Book
Author : Otso Ovaskainen,Nerea Abrego
Publisher : Cambridge University Press
Release : 2020-06-11
ISBN : 1108492460
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.

Ecological Models and Data in R

Ecological Models and Data in R Book
Author : Benjamin M. Bolker
Publisher : Princeton University Press
Release : 2008-07-21
ISBN : 0691125228
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

Models for Ecological Data

Models for Ecological Data Book
Author : James S. Clark
Publisher : Princeton University Press
Release : 2020-10-06
ISBN : 0691220123
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The environmental sciences are undergoing a revolution in the use of models and data. Facing ecological data sets of unprecedented size and complexity, environmental scientists are struggling to understand and exploit powerful new statistical tools for making sense of ecological processes. In Models for Ecological Data, James Clark introduces ecologists to these modern methods in modeling and computation. Assuming only basic courses in calculus and statistics, the text introduces readers to basic maximum likelihood and then works up to more advanced topics in Bayesian modeling and computation. Clark covers both classical statistical approaches and powerful new computational tools and describes how complexity can motivate a shift from classical to Bayesian methods. Through an available lab manual, the book introduces readers to the practical work of data modeling and computation in the language R. Based on a successful course at Duke University and National Science Foundation-funded institutes on hierarchical modeling, Models for Ecological Data will enable ecologists and other environmental scientists to develop useful models that make sense of ecological data. Consistent treatment from classical to modern Bayes Underlying distribution theory to algorithm development Many examples and applications Does not assume statistical background Extensive supporting appendixes Lab manual in R is available separately

Models of the Ecological Hierarchy

Models of the Ecological Hierarchy Book
Author : Ferenc Jordan
Publisher : Newnes
Release : 2012-11-29
ISBN : 0444593969
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"Based on selected papers covering the presentations at the 7th European Conference on Ecological Modelling, organized by ISEM and hosted by The Microsoft Research--University of Trento Center for Computational and Systems Biology from 30 May to 2 June, 2011 in Riva del Garde, Italy"--P. xi.

Occupancy Estimation and Modeling

Occupancy Estimation and Modeling Book
Author : Darryl I. MacKenzie,James D. Nichols,J. Andrew Royle,Kenneth H. Pollock,Larissa Bailey,James E. Hines
Publisher : Elsevier
Release : 2017-11-17
ISBN : 0124072453
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, Second Edition, provides a synthesis of model-based approaches for analyzing presence-absence data, allowing for imperfect detection. Beginning from the relatively simple case of estimating the proportion of area or sampling units occupied at the time of surveying, the authors describe a wide variety of extensions that have been developed since the early 2000s. This provides an improved insight about species and community ecology, including, detection heterogeneity; correlated detections; spatial autocorrelation; multiple states or classes of occupancy; changes in occupancy over time; species co-occurrence; community-level modeling, and more. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, Second Edition has been greatly expanded and detail is provided regarding the estimation methods and examples of their application are given. Important study design recommendations are also covered to give a well rounded view of modeling. Provides authoritative insights into the latest in occupancy modeling Examines the latest methods in analyzing detection/no detection data surveys Addresses critical issues of imperfect detectability and its effects on species occurrence estimation Discusses important study design considerations such as defining sample units, sample size determination and optimal effort allocation

Ecological Inference

Ecological Inference Book
Author : Gary King,Martin A. Tanner,Ori Rosen
Publisher : Cambridge University Press
Release : 2004-09-13
ISBN : 9780521542807
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Publisher Description

Handbook of Environmental and Ecological Statistics

Handbook of Environmental and Ecological Statistics Book
Author : Alan E. Gelfand,Montserrat Fuentes,Jennifer A. Hoeting,Richard Lyttleton Smith
Publisher : CRC Press
Release : 2019-01-15
ISBN : 1351648543
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.