Skip to main content

Handbook Of Polymer Applications In Medicine And Medical Devices

In Order to Read Online or Download Handbook Of Polymer Applications In Medicine And Medical Devices Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Kayvon Modjarrad,Sina Ebnesajjad
Publisher : Elsevier
Release : 2013-12-05
ISBN : 0323221696
Language : En, Es, Fr & De

GET BOOK

Book Description :

While the prevalence of plastics and elastomers in medical devices is now quite well known, there is less information available covering the use of medical devices and the applications of polymers beyond medical devices, such as in hydrogels, biopolymers and silicones beyond enhancement applications, and few books in which these are combined into a single reference. This book is a comprehensive reference source, bringing together a number of key medical polymer topics in one place for a broad audience of engineers and scientists, especially those currently developing new medical devices or seeking more information about current and future applications. In addition to a broad range of applications, the book also covers clinical outcomes and complications arising from the use of the polymers in the body, giving engineers a vital insight into the real world implications of the devices they’re creating. Regulatory issues are also covered in detail. The book also presents the latest developments on the use of polymers in medicine and development of nano-scale devices. Gathers discussions of a large number of applications of polymers in medicine in one place Provides an insight into both the legal and clinical implications of device design Relevant to industry, academic and medical professionals Presents the latest developments in the field, including medical devices on a nano-scale

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : André Colas,Jim Curtis
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076690
Language : En, Es, Fr & De

GET BOOK

Book Description :

Silicone materials have been widely used in medicine for over 60 years. Available in a variety of material types, they have unique chemical and physical properties that manifest in excellent biocompatibility and biodurability for many applications. Silicone elastomers have remarkably low glass-transition temperatures and maintain their flexibility over a wide temperature range, enabling them to withstand conditions from cold storage to steam autoclaving. They have high permeability to gases and many drugs, advantageous respectively in wound care or in transdermal drug delivery. They have low surface tension and remarkable chemical stability, enabling biocompatibility and biodurability in many long-term implant applications.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Len Czuba
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 012807664X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This chapter will present a look at the medical device market with a particular focus on the materials of construction of devices and what we can expect in new products looking ahead. A deeper look at some other trends that have an effect on the direction of the medical device industry will be done. Finally, consideration will be given to a number of global factors that can have dramatic effects on our industry.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Vinny R. Sastri
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076763
Language : En, Es, Fr & De

GET BOOK

Book Description :

Over the past 2000 years, many devices have been developed and used in the mitigation and diagnosis of diseases. The materials used in these devices have ranged from stone, wood, metal, ceramics, and most recently plastics. Medical devices have also evolved in sophistication and complexity over time. With the formalization of the scientific method in the seventeenth century such devices became more prevalent [1]. Many medical devices were manufactured by doctors or small companies and sold directly to the public with no government standards or oversight. With the explosion of medical technology in the early twentieth century, several intermediaries had evolved between the medical device industry and the public. In 1879, Dr E.R. Squibb, in an address to the Medical Society of the State of New York, proposed the enactment of a national statute to regulate food and drugs [2]. It was not until 27 years later that the Food and Drug Act of 1906 was introduced into the Congress and signed into law by President Theodore Roosevelt [3]. At that time, devices that were harmful to human safety and health proliferated the market but regulation of medical devices by the Bureau of Chemistry (the precursor to the Food and Drug Administration—FDA) was limited to challenging commercial products only after they had been released into the market. Devices in the marketplace that were defective, adulterated, or misbranded were seized and the device manufacturers were prosecuted in a court of law, but only after the products were sold in the market and caused harm to the end users. Thus, there was a strong need for regulating the devices before they entered the marketplace. An FDA report [4], issued in September 1970, detailed as many as 10,000 injuries and 731 deaths from ineffective medical devices. The report recommended the formation of a regulatory system and body that would enforce the production and sale of safe and effective devices to the public. All medical devices already on the market would be inventoried and classified into a three-tiered system based on their criticality of end use. It also detailed requirements for records and reports, registration and inspection of establishments, and uniform quality assurance programs called good manufacturing practices (GMP). After much lobbying by the FDA, Senate bill SR 510, “The Medical Device Amendments of 1973” was introduced by Senator Edward M. Kennedy and was passed by the Senate in 1975. House bill HR 11124, introduced by Representative Paul Rogers, was passed by the House in 1976. These bills eventually became the Medical Device Amendments of 1976, and were signed into law by President Nixon. The Medical Device Amendments of 1976 became the basis for the medical device regulation in the United States to control and regulate the production of finished devices and thus the device manufacturers themselves.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Wei He,Roberto Benson
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076666
Language : En, Es, Fr & De

GET BOOK

Book Description :

Biomaterials are an indispensable element in improving human health and quality of life. Applications of biomaterials include diagnostics (gene arrays and biosensors), medical supplies (blood bags and surgical tools), therapeutic treatments (medical implants and devices), and emerging regenerative medicine (tissue-engineered skin and cartilage). Polymers, being organic, offer a versatility that is unmatched by metals and ceramics. The wide spectrum of physical, mechanical, and chemical properties provided by polymers has fueled the extensive research, development, and applications of polymeric biomaterials. The significance of polymers as biomaterials is reflected in the market size of medical polymers, estimated to be approximately $1 billion. Many of these polymers were initially developed as plastics, elastomers, and fibers for nonmedical industrial applications, but were later developed as biomedical-specific materials. With rapid growth in modern biology and interdisciplinary collaborative efforts, polymeric biomaterials are being fashioned into bioactive and biomimetic materials, with excellent biocompatibility.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Laurence W. McKeen
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076658
Language : En, Es, Fr & De

GET BOOK

Book Description :

Medical devices range from simple devices, to test equipment, to implants. Plastics are used more and more in these devices, for weight, cost, and performance purposes. Examples of medical devices include surgical instruments, catheters, coronary stents, pacemakers, magnetic resonance imaging (MRI) machines, X-ray machines, prosthetic limbs, artificial hips/knees, surgical gloves, and bandages.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Zheng Zhang,Ophir Ortiz,Ritu Goyal,Joachim Kohn
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076755
Language : En, Es, Fr & De

GET BOOK

Book Description :

The design and development of tissue-engineered products has benefited from many years of clinical utilization of a wide range of biodegradable polymers. Newly developed biodegradable polymers and modifications of previously developed biodegradable polymers have enhanced the tools available for creating clinically important tissue-engineering applications. Insights gained from studies of cell-matrix interactions, cell-cell signaling, and organization of cellular components, are placing increased demands on medical implants to interact with the patient’s tissue in a more biologically appropriate fashion. Whereas in the twentieth century biocompatibility was largely equated with eliciting no harmful response, the biomaterials of the twenty first century will have to elicit tissue responses that support healing or regeneration of the patient’s own tissue. This chapter surveys the universe of those biodegradable polymers that may be useful in the development of medical implants and tissue-engineered products. Here, we distinguish between biologically derived polymers and synthetic polymers. The materials are described in terms of their chemical composition, breakdown products, mechanism of breakdown, mechanical properties, and clinical limitations. Also discussed are product design considerations in processing of biomaterials into a final form (e.g., gel, membrane, matrix) that will effect the desired tissue response.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Sina Ebnesajjad
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076682
Language : En, Es, Fr & De

GET BOOK

Book Description :

This chapter focuses on adhesives used in direct physiological contact in dental and medical procedures. Activity in both areas has been quite extensive outside the United States for decades. In contrast, adhesive use in medical devices, patches, and plasters has been ongoing in the United States for a long time. In the case of medical devices, adhesion is concerned with the joining of materials such as plastics, elastomers, textiles, metals, and ceramics, which are examined in other chapters of the present volume and are covered in various references [1–6], The coverage of this chapter is devoted to applications where to adhesives are in direct contact with tissues and other live organs.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Justin M. Saul,David F. Williams
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076747
Language : En, Es, Fr & De

GET BOOK

Book Description :

Hydrogels are crosslinked polymeric networks containing hydrophilic groups that promote swelling due to interaction with water [1]. While hydrogels are heavily used in the field of regenerative medicine, their application to biomedical systems is not new. In fact, it has been suggested that they were truly the first polymer materials to be developed for use in man [2]. They have been in use for clinical applications since the 1960s, initially for use in ocular applications including contact lenses and intraocular lenses due to their favorable oxygen permeability and lack of irritation leading to inflammation and foreign body response, which was observed with other plastics [3]. Before the concept of tissue engineering and regenerative medicine had gained traction, hydrogels were used for cell encapsulation [4]. They have also been utilized extensively in the clinic for wound healing applications due to their oxygen permeability, high water content, and ability to shield wounds from external agents. Perhaps the largest research focus and utility of hydrogels has been found in their use as controlled release systems. This combination of controlled release and cell encapsulation has led to increasing uses of hydrogels in regenerative medicine applications.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Zbigniew Nawrat
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076704
Language : En, Es, Fr & De

GET BOOK

Book Description :

An explosion in multidisciplinary research, combining mechanical, chemical, and electrical engineering with physiology and medicine, during the 1960s created huge advances in modern health care. In cardiovascular therapy, lifesaving implantable defibrillators, ventricular assist devices, catheter-based ablation devices, vascular stent technology, and cell and tissue engineering technologies have been introduced. The latest and leading technology presents robots intended to keep the surgeon in the most comfortable, dexterous, and ergonomic position during the entire procedure. The branch of the medical and rehabilitation robotics includes the manipulators and robots providing surgery, therapy, prosthetics, and rehabilitation. This chapter provides an overview of research in cardiac surgery devices.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Paul Stoodley,Luanne Hall-Stoodley,Bill Costerton,Patrick DeMeo,Mark Shirtliff,Ellen Gawalt,Sandeep Kathju
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076674
Language : En, Es, Fr & De

GET BOOK

Book Description :

The initial design criteria in the choice of indwelling materials for medical and dental purposes may be pragmatic, and based on the necessary mechanical properties required to fashion a functional device. Orthopedic implants require strong materials for weight-bearing, and articulating surfaces such as joints require durability and resistance to wear. Stents and shunts require flexibility and patency, and sutures require a high tensile strength yet also must be flexible enough for intricate manipulation. As the devices became more sophisticated and developments in materials science provided more options for manufacture, implants are being used more frequently and with longer anticipated lifetimes. Concurrently, the design process increasingly incorporated biocompatibility and comfort into the design criteria. However, with longer lifetimes, the more frequent use of invasive surgical procedures involving indwelling devices and biologically-friendly materials, there has been a rise in the number of incidences of device-related infection. Urinary catheters have been estimated to account for 30% of all nosocomial infections [1]. Between 66 and 88% of these occur after urinary catheterization [2]. It is also reported that almost 100% of catheterized patients develop an infection in an openly draining indwelling catheter which has been in place for four days or more [2]. For some procedures, such as orthopedic joint arthroplasties, the diagnosed surgical site infection rates are relatively low (between 1% and 2%; [3]); however, the increasing number of patients undergoing joint-replacement surgery translates to large numbers of patients afflicted with the consequences of complicating infections per year. Furthermore, infection of artificial joints can be devastating, since oral or IV antibiotic therapy frequently fails to resolve the infection, with the only remaining course of action being surgical debridement or partial or total revision. These two examples, the first with very high numbers of patients but of lesser severity in terms of impact to the individual, and the second, low numbers but severe patient impact, reflect the incentive to pursue a third design criteria—that of infection resistance—into materials and devices [4]. In the following sections we will discuss the role of bacterial biofilms in infection, and the growing literature highlighting biofilms as an important cause of device-related infection.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Steven M. Kurtz
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076720
Language : En, Es, Fr & De

GET BOOK

Book Description :

The orthopedic and biomaterials literature of the 1990s reflects an early academic curiosity in implant applications of polyaryletherketone (PAEK) biomaterials [1,2]. However, widespread commercial applications for PAEK biomaterials in the human body were first realized with cage implants intended to promote intervertebral body (interbody) fusion of the lumbar spine. Success of PAEK with interbody implants would later inspire applications in a broad variety of spinal implant applications, including posterior fusion, dynamic stabilization, and disc arthroplasty.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices Book
Author : Thomas C. Mort,Jeffrey P. Keck
Publisher : Elsevier Inc. Chapters
Release : 2013-12-05
ISBN : 0128076712
Language : En, Es, Fr & De

GET BOOK

Book Description :

The earliest recorded use of airway manipulation with an artificial device dates back to early Roman civilization when Asclepiades performed a tracheostomy for laryngeal edema. Today it is clear that the role of the endotracheal tube (ETT) in medicine is as invaluable as that of any other medical device created to date. The establishment of a definitive airway via the ETT in both elective and emergency situations has allowed for the delivery of immediate life-sustaining therapies during resuscitation, the maintenance of oxygenation and ventilation in prolonged illness, and the (temporary) delivery of inhaled anesthesia [1]. This chapter begins with a brief history of the development of the ETT. It describes the various ETTs available along with their indications for use and respective limitations. It reviews basic airway anatomy with regard to ETT placement, proper positioning and stabilization of the ETT, and complications attributed to its use. Finally, it addresses respiratory care of the intubated and mechanically ventilated patient.

Plastics in Medical Devices for Cardiovascular Applications

Plastics in Medical Devices for Cardiovascular Applications Book
Author : Ajay Padsalgikar
Publisher : William Andrew
Release : 2017-02-01
ISBN : 0323371221
Language : En, Es, Fr & De

GET BOOK

Book Description :

Plastics in Medical Devices for Cardiovascular Applications enables designers of new cardiovascular medical devices to make decisions about the kind of plastics that can go into the manufacture of their device by explaining the property requirements of various applications in this area, including artificial valves, lead insulation, balloons, vascular grafts, and more. Enables designers to improve device performance and remain compliant with regulations by selecting the best material for each application Presents a range of applications, including artificial valves, stents, and vascular grafts Explains which materials can be used for each application, and why each is appropriate, thus assisting in the design of better tools and processes

Integrated Safety and Risk Assessment for Medical Devices and Combination Products

Integrated Safety and Risk Assessment for Medical Devices and Combination Products Book
Author : Shayne C. Gad
Publisher : Springer Nature
Release : 2020-02-24
ISBN : 3030352412
Language : En, Es, Fr & De

GET BOOK

Book Description :

While the safety assessment (“biocompatibility”) of medical devices has been focused on issues of local tissue tolerance (irritation, sensitization, cytotoxicity) and selected quantal effects (genotoxicity and acute lethality) since first being regulated in the late 1950s, this has changed as devices assumed a much more important role in healthcare and became more complex in both composition and in their design and operation. Add to this that devices now frequently serve as delivery systems for drugs, and that drugs may be combined with devices to improve device performance, and the problems of ensuring patient safety with devices has become significantly more complex. A part of this, requirements for ensuring safety (once based on use of previously acceptable materials – largely polymers and metals) have come to requiring determining which chemical entities are potentially released from a device into patients (and how much is released). Then an appropriate and relevant (yet also conservative) risk assessment must be performed for each identified chemical structure. The challenges inherent in meeting the current requirements are multifold, and this text seeks to identify, understand, and solve all of them. • Identify and verify the most appropriate available data. • As in most cases such data is for a different route of exposure, transform it for use in assessing exposure by the route of interest. • As the duration (and rate) of exposure to moieties released from a device are most frequently different (longer) than what available data speaks to, transformation across tissue is required. • As innate and adaptive immune responses are a central part of device/patient interaction, assessing potential risks on this basis are required. • Incorporating assessments for special populations such as neonates. • Use of (Q)SAR (Quantitative Structure Activity Relationships) modeling in assessments. • Performance and presentation of integrative assessments covering all potential biologic risks. Appendices will contain summarized available biocompatibility data for commonly used device materials (polymers and metals) and safety assessments on the frequently seen moieties in extractions from devices.

Expanded PTFE Applications Handbook

Expanded PTFE Applications Handbook Book
Author : Sina Ebnesajjad
Publisher : William Andrew
Release : 2016-09-21
ISBN : 1437778569
Language : En, Es, Fr & De

GET BOOK

Book Description :

Expanded PTFE Applications Handbook: Technology, Manufacturing and Applications is a comprehensive guide to ePTFE, explaining manufacturing technologies, properties, and applications. Technologies that were previously shrouded in secrecy are revealed in detail, as are the origins and history of ePFTE. The book is an essential handbook for scientists and engineers working in PTFE processing industries, and for manufacturers working with fluoropolymers. It is also of use to purchasing managers and academics. Presents every aspect of the manufacturing technologies and properties of ePFTE Provides detailed coverage of ePTFE applications in apparel, medical, and surgical devices, filtration, vents, and industrial uses Follows ePFTE from its original discovery to the latest developments

Technology and Applications of Polymers Derived from Biomass

Technology and Applications of Polymers Derived from Biomass Book
Author : Syed Ali Ashter
Publisher : William Andrew
Release : 2017-11-22
ISBN : 0323511163
Language : En, Es, Fr & De

GET BOOK

Book Description :

Technology and Applications of Polymers Derived from Biomass explores the range of different possible routes from biomass to polymeric materials, including the value and limitations of using biomass in material applications and a comparison of petrochemical-derived polymers and bio-based polymers. The book discusses biomass sources, types, chemistry and handling concerns. It covers the manufacture of industrial chemicals from biomass and the derivation of monomers and polymers from biomass. It also details the processing and applications of biomass-derived polymers to enable materials scientists and engineers realize the potential of biomass as a sustainable source of polymers, including plastics and elastomers. The book is a one-stop-shop reference—giving students a basic understanding of the technology and how the material can be applied to industrial processes they will face in the workforce, and giving materials engineers and product designers the information they need to make more informed material selection decisions. Provides fundamental understanding of an increasingly important approach to sourcing polymeric materials Includes actionable, relevant information to enable materials engineers and product designers consider biomass-derived polymers in the products they are developing Discusses the environmental impact of biomass conversion to help readers improve the sustainability of their operations Compares petrochemical-derived polymers with bio-based polymers

Fluoropolymer Applications in the Chemical Processing Industries

Fluoropolymer Applications in the Chemical Processing Industries Book
Author : Sina Ebnesajjad,Pradip R. Khaladkar
Publisher : William Andrew
Release : 2017-10-30
ISBN : 0323461158
Language : En, Es, Fr & De

GET BOOK

Book Description :

Fluoropolymer Applications in Chemical Processing Industries: The Definitive User's Guide and Handbook, Second Edition, contains the most extensive collection of data and information on fluoropolymer applications in chemical processing industries. Because of their superior properties, fluoropolymers have been rapidly replacing metal alloys for corrosion inhibition in chemical processing equipment. This book is a complete compendium of information about fluoropolymer lining materials and structural piping and tubing. Fluoropolymer surfaces preserve purity of processing streams in the chemical processing, plastics, food, pharmaceutical, semiconductor, and pulp and paper industries. Updated to reflect major changes since 2004, this book contains practical, problem-solving tools for professionals in those industries. Equipment manufacturers, plant operators, and product design and manufacturing engineers all will benefit from the in-depth knowledge provided. This new edition includes new fluoropolymer grades and new examples of the fluoropolymer role in preventing corrosion. New fabrication techniques have been added, and additional emphasis has been placed on adhesion and welding techniques. New sections have been added on inspection of new linings, and in-service inspection – including inspection frequency, acceptance criteria, fitness for service evaluation, and reparability. Includes extensive guidelines for the selection of fluoropolymers for corrosion control Features a detailed ‘how-to’ on processes that convert fluoropolymers into shapes and parts Discusses fabrication techniques to finish the fluoropolymer components before exposure to harsh chemical environments Includes laboratory techniques to determine the cause of part failure, and a modeling methodology to predict and analyze failure of fluoropolymer parts

Encyclopedia of Polymer Applications 3 Volume Set

Encyclopedia of Polymer Applications  3 Volume Set Book
Author : Munmaya Mishra
Publisher : CRC Press
Release : 2018-12-17
ISBN : 1351019406
Language : En, Es, Fr & De

GET BOOK

Book Description :

Undoubtedly the applications of polymers are rapidly evolving. Technology is continually changing and quickly advancing as polymers are needed to solve a variety of day-to-day challenges leading to improvements in quality of life. The Encyclopedia of Polymer Applications presents state-of-the-art research and development on the applications of polymers. This groundbreaking work provides important overviews to help stimulate further advancements in all areas of polymers. This comprehensive multi-volume reference includes articles contributed from a diverse and global team of renowned researchers. It offers a broad-based perspective on a multitude of topics in a variety of applications, as well as detailed research information, figures, tables, illustrations, and references. The encyclopedia provides introductions, classifications, properties, selection, types, technologies, shelf-life, recycling, testing and applications for each of the entries where applicable. It features critical content for both novices and experts including, engineers, scientists (polymer scientists, materials scientists, biomedical engineers, macromolecular chemists), researchers, and students, as well as interested readers in academia, industry, and research institutions.