Skip to main content

Handbook Of Neural Computation

Download Handbook Of Neural Computation Full eBooks in PDF, EPUB, and kindle. Handbook Of Neural Computation is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Handbook of Neural Computation

Handbook of Neural Computation Book
Author : Pijush Samui,Sanjiban Sekhar Roy,Valentina E. Balas
Publisher : Academic Press
Release : 2017-07-18
ISBN : 0128113197
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods

Handbook of Neural Computing Applications

Handbook of Neural Computing Applications Book
Author : Alianna J. Maren,Craig T. Harston,Robert M. Pap
Publisher : Academic Press
Release : 2014-05-10
ISBN : 148326484X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Neural Computing Applications is a collection of articles that deals with neural networks. Some papers review the biology of neural networks, their type and function (structure, dynamics, and learning) and compare a back-propagating perceptron with a Boltzmann machine, or a Hopfield network with a Brain-State-in-a-Box network. Other papers deal with specific neural network types, and also on selecting, configuring, and implementing neural networks. Other papers address specific applications including neurocontrol for the benefit of control engineers and for neural networks researchers. Other applications involve signal processing, spatio-temporal pattern recognition, medical diagnoses, fault diagnoses, robotics, business, data communications, data compression, and adaptive man-machine systems. One paper describes data compression and dimensionality reduction methods that have characteristics, such as high compression ratios to facilitate data storage, strong discrimination of novel data from baseline, rapid operation for software and hardware, as well as the ability to recognized loss of data during compression or reconstruction. The collection can prove helpful for programmers, computer engineers, computer technicians, and computer instructors dealing with many aspects of computers related to programming, hardware interface, networking, engineering or design.

Handbook of Neural Computation

Handbook of Neural Computation Book
Author : E Fiesler,R Beale
Publisher : CRC Press
Release : 1996-01-01
ISBN : 9780750303125
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar problems. It is unmatched in the breadth of its coverage and is certain to become the standard reference resource for the neural network community.

The Handbook of Brain Theory and Neural Networks

The Handbook of Brain Theory and Neural Networks Book
Author : Michael A. Arbib,Prudence H. Arbib
Publisher : MIT Press
Release : 2003
ISBN : 0262011972
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).

Handbook of Neural Computation

Handbook of Neural Computation Book
Author : Emile Fiesler,Russell Beale
Publisher : CRC Press
Release : 2020-01-15
ISBN : 1420050648
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar probl

Handbook of Neural Network Signal Processing

Handbook of Neural Network Signal Processing Book
Author : Yu Hen Hu,Jenq-Neng Hwang
Publisher : CRC Press
Release : 2018-10-03
ISBN : 1420038613
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The use of neural networks is permeating every area of signal processing. They can provide powerful means for solving many problems, especially in nonlinear, real-time, adaptive, and blind signal processing. The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view. The authors cover basic principles, modeling, algorithms, architectures, implementation procedures, and well-designed simulation examples of audio, video, speech, communication, geophysical, sonar, radar, medical, and many other signals. The subject of neural networks and their application to signal processing is constantly improving. You need a handy reference that will inform you of current applications in this new area. The Handbook of Neural Network Signal Processing provides this much needed service for all engineers and scientists in the field.

Handbook of Neural Computation

Handbook of Neural Computation Book
Author : Emile Fiesler,Russell Beale
Publisher : CRC Press
Release : 1997-01-01
ISBN : 9780750305242
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In recent years, neural computation has developed from a specialized research discipline into a broadly based and dynamic activity with applications in an astonishing variety of fields. Many scientists, engineers and other practitioners are now using neural networks to tackle problems that are either intractable or unrealistically time consuming to solve through traditional computational strategies. The inaugural volume in the Computational Intelligence Library provides speedy dissemination of new ideas to a broad spectrum of neural network users, designers and implementers. Devoted to network fundamentals, models, algorithms and applications, the work is intended to become the standard reference resource for the neural network community. As the field expands and develops, leading researchers will report on an analyze promising new approaches. In this way, the Handbook will become an evolving compendium on the state of the art of neural computation. Available in loose-leaf print form as well as in an electronic edition that combines both CD-ROM and on-line (World Wide Web) access to its contents, the Handbook of Neural Computation is available on a subscription basis, with regularly published supplements keeping readers abreast of late-breaking developments and new advances in this rapidly developing field.

Handbook of Neural Networks for Speech Processing

Handbook of Neural Networks for Speech Processing Book
Author : Shigeru Katagiri
Publisher : Artech House Publishers
Release : 2000
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Here are the comprehensive details on cutting edge technologies employing neural networks for speech recognition and speech processing in modern communications. Going far beyond the simple speech recognition technologies on the market today, this new book, written by and for speech and signal processing engineers in industry, R&D, and academia, takes you to the forefront of the hottest emergent neural net-based speech processing techniques.

Handbook of Neuroevolution Through Erlang

Handbook of Neuroevolution Through Erlang Book
Author : Gene I. Sher
Publisher : Springer Science & Business Media
Release : 2012-11-06
ISBN : 1461444632
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Neuroevolution Through Erlang presents both the theory behind, and the methodology of, developing a neuroevolutionary-based computational intelligence system using Erlang. With a foreword written by Joe Armstrong, this handbook offers an extensive tutorial for creating a state of the art Topology and Weight Evolving Artificial Neural Network (TWEANN) platform. In a step-by-step format, the reader is guided from a single simulated neuron to a complete system. By following these steps, the reader will be able to use novel technology to build a TWEANN system, which can be applied to Artificial Life simulation, and Forex trading. Because of Erlang’s architecture, it perfectly matches that of evolutionary and neurocomptational systems. As a programming language, it is a concurrent, message passing paradigm which allows the developers to make full use of the multi-core & multi-cpu systems. Handbook of Neuroevolution Through Erlang explains how to leverage Erlang’s features in the field of machine learning, and the system’s real world applications, ranging from algorithmic financial trading to artificial life and robotics.

Handbook of Neural Engineering

Handbook of Neural Engineering Book
Author : Metin Akay
Publisher : John Wiley & Sons
Release : 2007-01-09
ISBN : 0470068280
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

An important new work establishing a foundation for future developments in neural engineering The Handbook of Neural Engineering provides theoretical foundations in computational neural science and engineering and current applications in wearable and implantable neural sensors/probes. Inside, leading experts from diverse disciplinary groups representing academia, industry, and private and government organizations present peer-reviewed contributions on the brain-computer interface, nano-neural engineering, neural prostheses, imaging the brain, neural signal processing, the brain, and neurons. The Handbook of Neural Engineering covers: Neural signal and image processing--the analysis and modeling of neural activity and EEG-related activities using the nonlinear and nonstationary analysis methods, including the chaos, fractal, and time-frequency and time-scale analysis methods--and how to measure functional, physiological, and metabolic activities in the human brain using current and emerging medical imaging technologies Neuro-nanotechnology, artificial implants, and neural prosthesis--the design of multi-electrode arrays to study how the neurons of human and animals encode stimuli, the evaluation of functional changes in neural networks after stroke and spinal cord injuries, and improvements in therapeutic applications using neural prostheses Neurorobotics and neural rehabilitation engineering--the recent developments in the areas of biorobotic system, biosonar head, limb kinematics, and robot-assisted activity to improve the treatment of elderly subjects at the hospital and home, as well as the interactions of the neuron chip, neural information processing, perception and neural dynamics, learning memory and behavior, biological neural networks, and neural control

Neural Computing An Introduction

Neural Computing   An Introduction Book
Author : R Beale,T Jackson
Publisher : CRC Press
Release : 1990-01-01
ISBN : 9781420050431
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Neural computing is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. The book also highlights the applications of each approach and explores the relationships among models developed and between the brain and its function. A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.

The Handbook of Brain Theory and Neural Networks

The Handbook of Brain Theory and Neural Networks Book
Author : Michael A. Arbib
Publisher : MIT Press (MA)
Release : 1998
ISBN : 9780262511025
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Choice Outstanding Academic Title, 1996. In hundreds of articles by experts from around the world, and in overviews and "road maps" prepared by the editor, The Handbook of Brain Theory and Neural Networks charts the immense progress made in recent years in many specific areas related to great questions: How does the brain work? How can we build intelligent machines? While many books discuss limited aspects of one subfield or another of brain theory and neural networks, the Handbook covers the entire sweep of topics—from detailed models of single neurons, analyses of a wide variety of biological neural networks, and connectionist studies of psychology and language, to mathematical analyses of a variety of abstract neural networks, and technological applications of adaptive, artificial neural networks. Expository material makes the book accessible to readers with varied backgrounds while still offering a clear view of the recent, specialized research on specific topics.

Handbook of Neural Activity Measurement

Handbook of Neural Activity Measurement Book
Author : Romain Brette,Alain Destexhe
Publisher : Cambridge University Press
Release : 2012-09-06
ISBN : 0521516226
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Underlying principles of the various techniques are explained, enabling neuroscientists to extract meaningful information from their measurements.

Cognitive Computing Theory and Applications

Cognitive Computing  Theory and Applications Book
Author : Vijay V Raghavan,Venkat N. Gudivada,Venu Govindaraju,C.R. Rao
Publisher : Elsevier
Release : 2016-09-10
ISBN : 0444637516
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Cognitive Computing: Theory and Applications, written by internationally renowned experts, focuses on cognitive computing and its theory and applications, including the use of cognitive computing to manage renewable energy, the environment, and other scarce resources, machine learning models and algorithms, biometrics, Kernel Based Models for transductive learning, neural networks, graph analytics in cyber security, neural networks, data driven speech recognition, and analytical platforms to study the brain-computer interface. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowned experts in their respective areas

Graphical Models

Graphical Models Book
Author : Michael Irwin Jordan,Terrence Joseph Sejnowski,Tomaso A. Poggio
Publisher : MIT Press
Release : 2001
ISBN : 9780262600422
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss

Handbook of Human Computation

Handbook of Human Computation Book
Author : Pietro Michelucci
Publisher : Springer Science & Business Media
Release : 2013-12-04
ISBN : 1461488060
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This volume addresses the emerging area of human computation, The chapters, written by leading international researchers, explore existing and future opportunities to combine the respective strengths of both humans and machines in order to create powerful problem-solving capabilities. The book bridges scientific communities, capturing and integrating the unique perspective and achievements of each. It coalesces contributions from industry and across related disciplines in order to motivate, define, and anticipate the future of this exciting new frontier in science and cultural evolution. Readers can expect to find valuable contributions covering Foundations; Application Domains; Techniques and Modalities; Infrastructure and Architecture; Algorithms; Participation; Analysis; Policy and Security and the Impact of Human Computation. Researchers and professionals will find the Handbook of Human Computation a valuable reference tool. The breadth of content also provides a thorough foundation for students of the field.

Handbook of Deep Learning Applications

Handbook of Deep Learning Applications Book
Author : Valentina Emilia Balas,Sanjiban Sekhar Roy,Dharmendra Sharma,Pijush Samui
Publisher : Springer
Release : 2019-02-25
ISBN : 3030114791
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Handbook on Soft Computing for Video Surveillance

Handbook on Soft Computing for Video Surveillance Book
Author : Sankar K. Pal,Alfredo Petrosino,Lucia Maddalena
Publisher : CRC Press
Release : 2012-01-25
ISBN : 1439856842
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Information on integrating soft computing techniques into video surveillance is widely scattered among conference papers, journal articles, and books. Bringing this research together in one source, Handbook on Soft Computing for Video Surveillance illustrates the application of soft computing techniques to different tasks in video surveillance. Worldwide experts in the field present novel solutions to video surveillance problems and discuss future trends. After an introduction to video surveillance systems and soft computing tools, the book gives examples of neural network-based approaches for solving video surveillance tasks and describes summarization techniques for content identification. Covering a broad spectrum of video surveillance topics, the remaining chapters explain how soft computing techniques are used to detect moving objects, track objects, and classify and recognize target objects. The book also explores advanced surveillance systems under development. Incorporating both existing and new ideas, this handbook unifies the basic concepts, theories, algorithms, and applications of soft computing. It demonstrates why and how soft computing methodologies can be used in various video surveillance problems.

Neural Networks and Deep Learning

Neural Networks and Deep Learning Book
Author : Charu C. Aggarwal
Publisher : Springer
Release : 2018-08-25
ISBN : 3319944630
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Deep Learning

Deep Learning Book
Author : Ian Goodfellow,Yoshua Bengio,Aaron Courville
Publisher : MIT Press
Release : 2016-11-10
ISBN : 0262337371
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.