Skip to main content

Handbook Of Latent Variable And Related Models

Download Handbook Of Latent Variable And Related Models Full eBooks in PDF, EPUB, and kindle. Handbook Of Latent Variable And Related Models is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Handbook of Latent Variable and Related Models

Handbook of Latent Variable and Related Models Book
Author : Anonim
Publisher : Elsevier
Release : 2011-08-11
ISBN : 9780080471266
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Generalized Latent Variable Modeling

Generalized Latent Variable Modeling Book
Author : Anders Skrondal,Sophia Rabe-Hesketh
Publisher : CRC Press
Release : 2004-05-11
ISBN : 0203489438
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Latent Variable Models

Latent Variable Models Book
Author : John C. Loehlin
Publisher : Psychology Press
Release : 2004-05-20
ISBN : 1135614342
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. This approach helps less mathematically inclined students grasp the underlying relationships between path analysis, factor analysis, and structural equation modeling more easily. A few sections of the book make use of elementary matrix algebra. An appendix on the topic is provided for those who need a review. The author maintains an informal style so as to increase the book's accessibility. Notes at the end of each chapter provide some of the more technical details. The book is not tied to a particular computer program, but special attention is paid to LISREL, EQS, AMOS, and Mx. New in the fourth edition of Latent Variable Models: *a data CD that features the correlation and covariance matrices used in the exercises; *new sections on missing data, non-normality, mediation, factorial invariance, and automating the construction of path diagrams; and *reorganization of chapters 3-7 to enhance the flow of the book and its flexibility for teaching. Intended for advanced students and researchers in the areas of social, educational, clinical, industrial, consumer, personality, and developmental psychology, sociology, political science, and marketing, some prior familiarity with correlation and regression is helpful.

Latent Variable Models and Factor Analysis

Latent Variable Models and Factor Analysis Book
Author : David J. Bartholomew,Martin Knott,Irini Moustaki
Publisher : John Wiley & Sons
Release : 2011-06-28
ISBN : 1119973708
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Latent Variable Models and Factor Analysis provides a comprehensive and unified approach to factor analysis and latent variable modeling from a statistical perspective. This book presents a general framework to enable the derivation of the commonly used models, along with updated numerical examples. Nature and interpretation of a latent variable is also introduced along with related techniques for investigating dependency. This book: Provides a unified approach showing how such apparently diverse methods as Latent Class Analysis and Factor Analysis are actually members of the same family. Presents new material on ordered manifest variables, MCMC methods, non-linear models as well as a new chapter on related techniques for investigating dependency. Includes new sections on structural equation models (SEM) and Markov Chain Monte Carlo methods for parameter estimation, along with new illustrative examples. Looks at recent developments on goodness-of-fit test statistics and on non-linear models and models with mixed latent variables, both categorical and continuous. No prior acquaintance with latent variable modelling is pre-supposed but a broad understanding of statistical theory will make it easier to see the approach in its proper perspective. Applied statisticians, psychometricians, medical statisticians, biostatisticians, economists and social science researchers will benefit from this book.

Random Effect and Latent Variable Model Selection

Random Effect and Latent Variable Model Selection Book
Author : David Dunson
Publisher : Springer Science & Business Media
Release : 2010-03-18
ISBN : 9780387767215
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors on the mean and the second to random effects characterizing the impact on the covariance. LMEs have also been increasingly used for function estimation. In implementing LME analyses, model selection problems are unavoidable. For example, there may be interest in comparing models with and without a predictor in the ?xed and/or random effects component.

Handbook of Psychology Research Methods in Psychology

Handbook of Psychology  Research Methods in Psychology Book
Author : Irving B. Weiner,John A. Schinka,Wayne F. Velicer
Publisher : John Wiley & Sons
Release : 2012-10-16
ISBN : 0470890649
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Psychology is of interest to academics from many fields, as well as to the thousands of academic and clinical psychologists and general public who can't help but be interested in learning more about why humans think and behave as they do. This award-winning twelve-volume reference covers every aspect of the ever-fascinating discipline of psychology and represents the most current knowledge in the field. This ten-year revision now covers discoveries based in neuroscience, clinical psychology's new interest in evidence-based practice and mindfulness, and new findings in social, developmental, and forensic psychology.

Latent Variable and Latent Structure Models

Latent Variable and Latent Structure Models Book
Author : George A. Marcoulides,Irini Moustaki
Publisher : Psychology Press
Release : 2014-04-04
ISBN : 1135640653
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This edited volume features cutting-edge topics from the leading researchers in the areas of latent variable modeling. Content highlights include coverage of approaches dealing with missing values, semi-parametric estimation, robust analysis, hierarchical data, factor scores, multi-group analysis, and model testing. New methodological topics are illustrated with real applications. The material presented brings together two traditions: psychometrics and structural equation modeling. Latent Variable and Latent Structure Models' thought-provoking chapters from the leading researchers in the area will help to stimulate ideas for further research for many years to come. This volume will be of interest to researchers and practitioners from a wide variety of disciplines, including biology, business, economics, education, medicine, psychology, sociology, and other social and behavioral sciences. A working knowledge of basic multivariate statistics and measurement theory is assumed.

Bayesian Hierarchical Models

Bayesian Hierarchical Models Book
Author : Peter D. Congdon
Publisher : CRC Press
Release : 2019-09-16
ISBN : 1498785913
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website

Handbook of Structural Equation Modeling

Handbook of Structural Equation Modeling Book
Author : Rick H. Hoyle
Publisher : Guilford Press
Release : 2012-06-01
ISBN : 1606230778
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"This handbook offers comprehensive coverage of structural equation modeling (SEM), beginning with background issues, continuing through statistical underpinnings and steps in implementation, then moving into basic and advanced applications of SEM. In a single volume, it offers virtually complete coverage of SEM and its use"--

The SAGE Handbook of Quantitative Methodology for the Social Sciences

The SAGE Handbook of Quantitative Methodology for the Social Sciences Book
Author : David Kaplan
Publisher : SAGE
Release : 2004-06-21
ISBN : 9780761923596
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Quantitative methodology is a highly specialized field, and as with any highly specialized field, working through idiosyncratic language can be very difficult made even more so when concepts are conveyed in the language of mathematics and statistics. The Sage Handbook of Quantitative Methodology for the Social Sciences was conceived as a way of introducing applied statisticians, empirical researchers, and graduate students to the broad array of state-of-the-art quantitative methodologies in the social sciences. The contributing authors of the Handbook were asked to write about their areas of expertise in a way that would convey to the reader the utility of their respective methodologies. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter. The Handbook consists of six sections comprising twenty-five chapters, from topics in scaling and measurement, to advances in statistical modelling methodologies, and finally to broad philosophical themes that transcend many of the quantitative methodologies covered in this handbook.

Essential Statistical Methods for Medical Statistics

Essential Statistical Methods for Medical Statistics Book
Author : J. Philip Miller
Publisher : Elsevier
Release : 2010-11-08
ISBN : 9780444537386
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas. · Contributors are internationally renowned experts in their respective areas · Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research · Methods for assessing Biomarkers, analysis of competing risks · Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs · Structural equations modelling and longitudinal data analysis

Statistics in the Social Sciences

Statistics in the Social Sciences Book
Author : Stanislav Kolenikov,Lori Thombs,Douglas Steinley
Publisher : John Wiley & Sons
Release : 2010-02-22
ISBN : 9780470583326
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A one-of-a-kind compilation of modern statistical methods designed to support and advance research across the social sciences Statistics in the Social Sciences: Current Methodological Developments presents new and exciting statistical methodologies to help advance research and data analysis across the many disciplines in the social sciences. Quantitative methods in various subfields, from psychology to economics, are under demand for constant development and refinement. This volume features invited overview papers, as well as original research presented at the Sixth Annual Winemiller Conference: Methodological Developments of Statistics in the Social Sciences, an international meeting that focused on fostering collaboration among mathematical statisticians and social science researchers. The book provides an accessible and insightful look at modern approaches to identifying and describing current, effective methodologies that ultimately add value to various fields of social science research. With contributions from leading international experts on the topic, the book features in-depth coverage of modern quantitative social sciences topics, including: Correlation Structures Structural Equation Models and Recent Extensions Order-Constrained Proximity Matrix Representations Multi-objective and Multi-dimensional Scaling Differences in Bayesian and Non-Bayesian Inference Bootstrap Test of Shape Invariance across Distributions Statistical Software for the Social Sciences Statistics in the Social Sciences: Current Methodological Developments is an excellent supplement for graduate courses on social science statistics in both statistics departments and quantitative social sciences programs. It is also a valuable reference for researchers and practitioners in the fields of psychology, sociology, economics, and market research.

Applied Missing Data Analysis Second Edition

Applied Missing Data Analysis  Second Edition Book
Author : Craig K. Enders
Publisher : Guilford Publications
Release : 2022-07-01
ISBN : 1462549993
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website (www.appliedmissingdata.com) includes datasets and analysis examples from the book, up-to-date software information, and other resources. New to This Edition *Expanded coverage of Bayesian estimation, including a new chapter on incomplete categorical variables. *New chapters on factored regressions, model-based imputation strategies, multilevel missing data-handling methods, missing not at random analyses, and other timely topics. *Presents cutting-edge methods developed since the 2010 first edition; includes dozens of new data analysis examples. *Most of the book is entirely new.

The SAGE Handbook of Multilevel Modeling

The SAGE Handbook of Multilevel Modeling Book
Author : Marc A. Scott,Jeffrey S. Simonoff,Brian D. Marx
Publisher : SAGE
Release : 2013-08-31
ISBN : 1473971314
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Handbook of Advanced Multilevel Analysis

Handbook of Advanced Multilevel Analysis Book
Author : Joop Hox,J. Kyle Roberts
Publisher : Psychology Press
Release : 2011-01-11
ISBN : 113695127X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website http://www.hlm-online.com . Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.

Handbook of Data Analysis

Handbook of Data Analysis Book
Author : Melissa A Hardy,Alan Bryman
Publisher : SAGE
Release : 2009-06-17
ISBN : 1446203441
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Electronic Inspection Copy available for instructors here 'This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond' - Environment and Planning 'The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher' - Clive Seale, Brunel University 'With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ' - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa 'This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments' - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.

Handbook of Markov Chain Monte Carlo

Handbook of Markov Chain Monte Carlo Book
Author : Steve Brooks,Andrew Gelman,Galin Jones,Xiao-Li Meng
Publisher : CRC Press
Release : 2011-05-10
ISBN : 1420079425
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisherie

Meta Analysis

Meta Analysis Book
Author : Mike W.-L. Cheung
Publisher : John Wiley & Sons
Release : 2015-04-07
ISBN : 1118957822
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the importance of SEM and meta-analysis in answering research questions. Key ideas in meta-analysis and SEM are briefly reviewed, and various meta-analytic models are then introduced and linked to the SEM framework. Fixed-, random-, and mixed-effects models in univariate and multivariate meta-analyses, three-level meta-analysis, and meta-analytic structural equation modeling, are introduced. Advanced topics, such as using restricted maximum likelihood estimation method and handling missing covariates, are also covered. Readers will learn a single framework to apply both meta-analysis and SEM. Examples in R and in Mplus are included. This book will be a valuable resource for statistical and academic researchers and graduate students carrying out meta-analyses, and will also be useful to researchers and statisticians using SEM in biostatistics. Basic knowledge of either SEM or meta-analysis will be helpful in understanding the materials in this book.

Handbook of Partial Least Squares

Handbook of Partial Least Squares Book
Author : Vincenzo Esposito Vinzi,Wynne W. Chin,Jörg Henseler,Huiwen Wang
Publisher : Springer Science & Business Media
Release : 2010-03-10
ISBN : 3540328270
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This handbook provides a comprehensive overview of Partial Least Squares (PLS) methods with specific reference to their use in marketing and with a discussion of the directions of current research and perspectives. It covers the broad area of PLS methods, from regression to structural equation modeling applications, software and interpretation of results. The handbook serves both as an introduction for those without prior knowledge of PLS and as a comprehensive reference for researchers and practitioners interested in the most recent advances in PLS methodology.

A Beginner s Guide to Structural Equation Modeling

A Beginner s Guide to Structural Equation Modeling Book
Author : Randall E. Schumacker,Richard G. Lomax
Publisher : Psychology Press
Release : 2004-06-24
ISBN : 1135641919
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The second edition features: a CD with all of the book's Amos, EQS, and LISREL programs and data sets; new chapters on importing data issues related to data editing and on how to report research; an updated introduction to matrix notation and programs that illustrate how to compute these calculations; many more computer program examples and chapter exercises; and increased coverage of factors that affect correlation, the 4-step approach to SEM and hypothesis testing, significance, power, and sample size issues. The new edition's expanded use of applications make this book ideal for advanced students and researchers in psychology, education, business, health care, political science, sociology, and biology. A basic understanding of correlation is assumed and an understanding of the matrices used in SEM models is encouraged.