Skip to main content

Handbook Of Deep Learning In Biomedical Engineering

Download Handbook Of Deep Learning In Biomedical Engineering Full eBooks in PDF, EPUB, and kindle. Handbook Of Deep Learning In Biomedical Engineering is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Handbook of Deep Learning in Biomedical Engineering

Handbook of Deep Learning in Biomedical Engineering Book
Author : Valentina Emilia Balas,Brojo Kishore Mishra,Raghvendra Kumar
Publisher : Academic Press
Release : 2020-11-12
ISBN : 0128230479
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer’s, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer’s, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography

Handbook of Deep Learning in Biomedical Engineering and Health Informatics

Handbook of Deep Learning in Biomedical Engineering and Health Informatics Book
Author : E. Golden Julie,Y. Harold Robinson,S. M. Jaisakthi
Publisher : CRC Press
Release : 2021-09-22
ISBN : 1000370496
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This new volume discusses state-of-the-art deep learning techniques and approaches that can be applied in biomedical systems and health informatics. Deep learning in the biomedical field is an effective method of collecting and analyzing data that can be used for the accurate diagnosis of disease. This volume delves into a variety of applications, techniques, algorithms, platforms, and tools used in this area, such as image segmentation, classification, registration, and computer-aided analysis. The editors proceed on the principle that accurate diagnosis of disease depends on image acquisition and interpretation. There are many methods to get high resolution radiological images, but we are still lacking in automated image interpretation. Currently deep learning techniques are providing a feasible solution for automatic diagnosis of disease with good accuracy. Analyzing clinical data using deep learning techniques enables clinicians to diagnose diseases at an early stage and treat patients more effectively. Chapters explore such approaches as deep learning algorithms, convolutional neural networks and recurrent neural network architecture, image stitching techniques, deep RNN architectures, and more. This volume also depicts how deep learning techniques can be applied for medical diagnostics of several specific health scenarios, such as cancer, COVID-19, acute neurocutaneous syndrome, cardiovascular and neuro diseases, skin lesions and skin cancer, etc. Key features: Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies Handbook of Deep Learning in Biomedical Engineering and Health Informatics provides a thorough exploration of biomedical systems applied with deep learning techniques and will provide valuable information for researchers, medical and industry practitioners, academicians, and students.

Handbook of Deep Learning in Biomedical Engineering and Health Informatics

Handbook of Deep Learning in Biomedical Engineering and Health Informatics Book
Author : Golden Julie,S. M. Jaisakthi,Y. Harold Robinson
Publisher : Unknown
Release : 2021
ISBN : 9781774638170
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"This new volume discusses state-of-the-art deep learning techniques and approaches that can be applied in biomedical systems and health informatics. Deep learning in the biomedical field is an effective method of collecting and analyzing data that can be used for the accurate diagnosis of disease. This volume delves into a variety of applications, techniques, algorithms, platforms, and tools used in this area, such as image segmentation, classification, registration, and computer-aided analysis. The editors proceed on the principle that accurate diagnosis of disease depends on image acquisition and interpretation. There are many methods to get high resolution radiological images, but we are still lacking in automated image interpretation. Currently deep learning techniques are providing a feasible solution for automatic diagnosis of disease with good accuracy. Analyzing clinical data using deep learning techniques enables clinicians to diagnose diseases at an early stage and treat the patients more effectively. Chapters explore such approaches as deep learning algorithms, convolutional neural networks and recurrent neural network architecture, image stitching techniques, deep RNN architectures, and more. The volume also depicts how deep learning techniques can be applied for medical diagnostics of several specific health scenarios, such as cancer, COVID-19, acute neurocutaneous syndrome, cardiovascular and neuro diseases, skin lesions and skin cancer, etc. Key features: Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies Handbook of Deep Learning in Biomedical Engineering and Health Informatics provides a thorough exploration of biomedical systems applied with deep learning techniques and will provide valuable information for researchers, medical and industry practitioners, academicians, and students"--

Handbook of Artificial Intelligence in Biomedical Engineering

Handbook of Artificial Intelligence in Biomedical Engineering Book
Author : Krishnan Saravanan,Ramesh Kesavan,B. Surendiran,G. S. Mahalakshmi
Publisher : Unknown
Release : 2021
ISBN : 9781003045564
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert's knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts. Topics include: Security and privacy issues in biomedical AI systems and potential solutions Healthcare applications using biomedical AI systems Machine learning in biomedical engineering Live patient monitoring systems Semantic annotation of healthcare data This book presents a broad exploration of biomedical systems using artificial intelligence techniques with detailed coverage of the applications, techniques, algorithms, platforms, and tools in biomedical AI systems. This book will benefit researchers, medical and industry practitioners, academicians, and students"--

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare Book
Author : Janmenjoy Nayak,Bighnaraj Naik,Danilo Pelusi,Asit Kumar Das
Publisher : Academic Press
Release : 2021-04-08
ISBN : 0128222611
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence Helps readers analyze and do advanced research in specialty healthcare applications Includes links to websites, videos, articles and other online content to expand and support primary learning objectives

Handbook of Data Science Approaches for Biomedical Engineering

Handbook of Data Science Approaches for Biomedical Engineering Book
Author : Valentina Emilia Balas,Vijender Kumar Solanki,Raghvendra Kumar,Manju Khari
Publisher : Academic Press
Release : 2019-11-13
ISBN : 0128183195
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more

Handbook of Deep Learning Applications

Handbook of Deep Learning Applications Book
Author : Valentina Emilia Balas,Sanjiban Sekhar Roy,Dharmendra Sharma,Pijush Samui
Publisher : Springer
Release : 2019-02-25
ISBN : 3030114791
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Handbook of Neural Computation

Handbook of Neural Computation Book
Author : Pijush Samui,Sanjiban Sekhar Roy,Valentina E. Balas
Publisher : Academic Press
Release : 2017-07-18
ISBN : 0128113197
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods

The Role of the Internet of Things IoT in Biomedical Engineering

The Role of the Internet of Things  IoT  in Biomedical Engineering Book
Author : Sushree Bibhuprada B. Priyadarshini,Devendra Kumar Sharma,Rohit Sharma,Korhan Cengiz
Publisher : CRC Press
Release : 2022-02-17
ISBN : 1000400646
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This volume introduces the key evolving applications of IoT in the medical field for patient care delivery through the usage of smart devices. It shows how IoT opens the door to a wealth of relevant healthcare information through real-time data analysis as well as testing, providing reliable and pragmatic data that yields enhanced solutions and discovery of previously undiscovered issues. This new volume discusses IoT devices that are deployed for enabling patient health tracking, various emergency issues, smart administration of patients, etc. It looks at the problems of cardiac analysis in e-healthcare, explores the employment of smart devices aimed for different patient issues, and examines the usage of Arduino kits where the data can be transferred to the cloud for internet-based uses. The volume also considers the roles of IoT in electroencephalography (EEG) and magnetic resonance imaging (MRI), which play significant roles in biomedical applications. This book also incorporates the use of IoT applications for smart wheelchairs, telemedicine, GPS positioning of heart patients, smart administration with drug tracking, and more.

Handbook of Machine Learning for Computational Optimization

Handbook of Machine Learning for Computational Optimization Book
Author : Vishal Jain,Sapna Juneja,Abhinav Juneja,Ramani Kannan
Publisher : CRC Press
Release : 2021-11-02
ISBN : 1000455688
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.

Deep Learning for Biomedical Applications

Deep Learning for Biomedical Applications Book
Author : Utku Kose,Omer Deperlioglu,D. Jude Hemanth
Publisher : CRC Press
Release : 2021-07-20
ISBN : 1000406423
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.

Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare Book
Author : Kun Chang Lee,Sanjiban Sekhar Roy,Pijush Samui,Vijay Kumar
Publisher : Academic Press
Release : 2020-10-18
ISBN : 0128193158
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

Advances in Deep Learning for Medical Image Analysis

Advances in Deep Learning for Medical Image Analysis Book
Author : Archana Mire,Vinayak Elangovan,Shailaja Patil
Publisher : CRC Press
Release : 2022-04-28
ISBN : 1000575950
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer’s disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.

Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering

Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering Book
Author : Sisodia, Dilip Singh,Pachori, Ram Bilas,Garg, Lalit
Publisher : IGI Global
Release : 2020-02-28
ISBN : 1799821226
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Artificial intelligence (AI) is revolutionizing every aspect of human life including human healthcare and wellbeing management. Various types of intelligent healthcare engineering applications have been created that help to address patient healthcare and outcomes such as identifying diseases and gathering patient information. Advancements in AI applications in healthcare continue to be sought to aid rapid disease detection, health monitoring, and prescription drug tracking. TheHandbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering is an essential scholarly publication that provides comprehensive research on the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in the design, implementation, and optimization of healthcare engineering solutions. Featuring a wide range of topics such as genetic algorithms, mobile robotics, and neuroinformatics, this book is ideal for engineers, technology developers, IT consultants, hospital administrators, academicians, healthcare professionals, practitioners, researchers, and students.

High Performance Medical Image Processing

High Performance Medical Image Processing Book
Author : Sanjay Saxena,Sudip Paul
Publisher : CRC Press
Release : 2022-07-07
ISBN : 1000410358
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The processing of medical images in a reasonable timeframe and with high definition is very challenging. This volume helps to meet that challenge by presenting a thorough overview of medical imaging modalities, its processing, high-performance computing, and the need to embed parallelism in medical image processing techniques to achieve efficient and fast results. With contributions from researchers from prestigious laboratories and educational institutions, High-Performance Medical Image Processing provides important information on medical image processing techniques, parallel computing techniques, and embedding parallelism in different image processing techniques. A comprehensive review of parallel algorithms in medical image processing problems is a key feature of this book. The volume presents the relevant theoretical frameworks and the latest empirical research findings in the area and provides detailed descriptions about the diverse high-performance techniques. Topics discussed include parallel computing, multicore architectures and their applications in image processing, machine learning applications, conventional and advanced magnetic resonance imaging methods, hyperspectral image processing, algorithms for segmenting 2D slices for 3D viewing, and more. Case studies, such as on the detection of cancer tumors, expound on the information presented. Key features: Provides descriptions of different medical imaging modalities and their applications Discusses the basics and advanced aspects of parallel computing with different multicore architectures Expounds on the need for embedding data and task parallelism in different medical image processing techniques Presents helpful examples and case studies of the discussed methods This book will be valuable for professionals, researchers, and students working in the field of healthcare engineering, medical imaging technology, applications in machine and deep learning, and more. It is also appropriate for courses in computer engineering, biomedical engineering and electrical engineering based on artificial intelligence, parallel computing, high performance computing, and machine learning and its applications in medical imaging.

Internet of Things and Its Applications

Internet of Things and Its Applications Book
Author : Sachi Nandan Mohanty,Jyotir Moy Chatterjee,Suneeta Satpathy
Publisher : Springer Nature
Release : 2021-11-25
ISBN : 3030775283
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a holistic approach to the Internet of Things (IoT) model, covering both the technologies and their applications, focusing on uniquely identifiable objects and their virtual representations in an Internet-like structure. The authors add to the rapid growth in research on IoT communications and networks, confirming the scalability and broad reach of the core concepts. The book is filled with examples of innovative applications and real-world case studies. The authors also address the business, social, and legal aspects of the Internet of Things and explore the critical topics of security and privacy and their challenges for both individuals and organizations. The contributions are from international experts in academia, industry, and research.

Handbook of Neural Engineering

Handbook of Neural Engineering Book
Author : Metin Akay
Publisher : John Wiley & Sons
Release : 2007-01-09
ISBN : 0470068280
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

An important new work establishing a foundation for future developments in neural engineering The Handbook of Neural Engineering provides theoretical foundations in computational neural science and engineering and current applications in wearable and implantable neural sensors/probes. Inside, leading experts from diverse disciplinary groups representing academia, industry, and private and government organizations present peer-reviewed contributions on the brain-computer interface, nano-neural engineering, neural prostheses, imaging the brain, neural signal processing, the brain, and neurons. The Handbook of Neural Engineering covers: Neural signal and image processing--the analysis and modeling of neural activity and EEG-related activities using the nonlinear and nonstationary analysis methods, including the chaos, fractal, and time-frequency and time-scale analysis methods--and how to measure functional, physiological, and metabolic activities in the human brain using current and emerging medical imaging technologies Neuro-nanotechnology, artificial implants, and neural prosthesis--the design of multi-electrode arrays to study how the neurons of human and animals encode stimuli, the evaluation of functional changes in neural networks after stroke and spinal cord injuries, and improvements in therapeutic applications using neural prostheses Neurorobotics and neural rehabilitation engineering--the recent developments in the areas of biorobotic system, biosonar head, limb kinematics, and robot-assisted activity to improve the treatment of elderly subjects at the hospital and home, as well as the interactions of the neuron chip, neural information processing, perception and neural dynamics, learning memory and behavior, biological neural networks, and neural control

Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning Book
Author : Solanki, Arun,Kumar, Sandeep,Nayyar, Anand
Publisher : IGI Global
Release : 2019-12-13
ISBN : 1522596453
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.

Handbook of Machine Learning for Computational Optimization

Handbook of Machine Learning for Computational Optimization Book
Author : Vishal Jain
Publisher : Unknown
Release : 2021
ISBN : 9780367685454
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"Technology is moving at an exponential pace in this era of computational intelligence. Machine Learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new Machine Learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach which makes Machine Learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms which are more efficient and reliable for new dimensions in discovering other applications and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for Machine Learning based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers"--