Skip to main content

Gradient Enhanced Continuum Plasticity

Download Gradient Enhanced Continuum Plasticity Full eBooks in PDF, EPUB, and kindle. Gradient Enhanced Continuum Plasticity is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Gradient Enhanced Continuum Plasticity

Gradient Enhanced Continuum Plasticity Book
Author : George Z. Voyiadjis,Yooseob Song
Publisher : Elsevier
Release : 2020-03-27
ISBN : 0128177675
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity Describes micromechanical aspects from experimental observations

Classical Continuum Mechanics

Classical Continuum Mechanics Book
Author : Karan S. Surana
Publisher : CRC Press
Release : 2021-12-23
ISBN : 1000512347
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.

Size Dependent Continuum Mechanics Approaches

Size Dependent Continuum Mechanics Approaches Book
Author : Esmaeal Ghavanloo,S. Ahmad Fazelzadeh,Francesco Marotti de Sciarra
Publisher : Springer Nature
Release : 2021-04-02
ISBN : 3030630501
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a comprehensive and timely report of size-dependent continuum mechanics approaches. Written by scientists with worldwide reputation and established expertise, it covers the most recent findings, advanced theoretical developments and computational techniques, as well as a range of applications, in the field of nonlocal continuum mechanics. Chapters are concerned with lattice-based nonlocal models, Eringen’s nonlocal models, gradient theories of elasticity, strain- and stress-driven nonlocal models, and peridynamic theory, among other topics. This book provides researchers and practitioners with extensive and specialized information on cutting-edge theories and methods, innovative solutions to current problems and a timely insight into the behavior of some advanced materials and structures. It also offers a useful reference guide to senior undergraduate and graduate students in mechanical engineering, materials science, and applied physics.

Handbook of Micromechanics and Nanomechanics

Handbook of Micromechanics and Nanomechanics Book
Author : Shaofan Li,Xin-Lin Gao
Publisher : CRC Press
Release : 2016-04-19
ISBN : 9814411248
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents the latest developments and applications of micromechanics and nanomechanics. It particularly focuses on some recent applications and impact areas of micromechanics and nanomechanics that have not been discussed in traditional micromechanics and nanomechanics books on metamaterials, micromechanics of ferroelectric/piezoelectric, electromagnetic materials, micromechanics of interface, size effects and strain gradient theories, computational and experimental nanomechanics, multiscale simulations and theories, soft matter composites, and computational homogenization theory. This book covers analytical, experimental, as well as computational and numerical approaches in depth.

Local and Nonlocal Micromechanics of Heterogeneous Materials

Local and Nonlocal Micromechanics of Heterogeneous Materials Book
Author : Valeriy A. Buryachenko
Publisher : Springer Nature
Release : 2021-11-16
ISBN : 3030817849
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents the micromechanics of random structure heterogeneous materials, a multidisciplinary research area that has experienced a revolutionary renascence at the overlap of various branches of materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. It demonstrates intriguing successes of unified rigorous theoretical methods of applied mathematics and statistical physics in material science of microheterogeneous media. The prediction of the behaviour of heterogeneous materials by the use of properties of constituents and their microstructure is a central problem of micromechanics. This book is the first in micromechanics where a successful effort of systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature is attempted. The uniqueness of the book lies in its development and expressive representation of statistical methods quantitatively describing random structures which are at most adopted for the forthcoming evaluation of a wide variety of macroscopic transport, electromagnetic, strength, and elastoplastic properties of heterogeneous materials.

Size Effects in Plasticity

Size Effects in Plasticity Book
Author : George Voyiadjis,Mohammadreza Yaghoobi
Publisher : Academic Press
Release : 2019-08-01
ISBN : 0128135131
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Size Effects in Plasticity: From Macro to Nano provides concise explanations of all available methods in this area, from atomistic simulation, to non-local continuum models to capture size effects. It then compares their applicability to a wide range of research scenarios. This essential guide addresses basic principles, numerical issues and computation, applications and provides code which readers can use in their own modeling projects. Researchers in the fields of computational mechanics, materials science and engineering will find this to be an ideal resource when they address the size effects observed in deformation mechanisms and strengths of various materials. Provides a comprehensive reference on the field of size effects and a review of mechanics of materials research in all scales Explains all major methods of size effects simulation, including non-local continuum models, non-local crystal plasticity, discrete dislocation methods and molecular dynamics Includes source codes that readers can use in their own projects

Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures Book
Author : Gunther Meschke,René de Borst,Herbert Mang,Nenad Bicanic
Publisher : CRC Press
Release : 2006-03-16
ISBN : 9780415397490
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.

Higher Gradient Materials and Related Generalized Continua

Higher Gradient Materials and Related Generalized Continua Book
Author : Holm Altenbach,Wolfgang H. Müller,Bilen Emek Abali
Publisher : Springer Nature
Release : 2019-11-04
ISBN : 303030406X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as: • The structural size is very small. • The microstructure is complex. • The effects are localized. As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.

IUTAM Symposium on Multiscale Modeling and Characterization of Elastic Inelastic Behavior of Engineering Materials

IUTAM Symposium on Multiscale Modeling and Characterization of Elastic Inelastic Behavior of Engineering Materials Book
Author : S. Ahzi,M. Cherkaoui,M.A. Khaleel,H.M. Zbib,M.A. Zikry,B. LaMatina
Publisher : Springer Science & Business Media
Release : 2013-04-17
ISBN : 940170483X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The papers in this proceeding are a collection of the works presented at the IUTAM symposium-Marrakech 2002 (October 20-25) which brought together scientists from various countries. These papers cover contemporary topics in multiscale modeling and characterization of materials behavior of engineering materials. They were selected to focus on topics related to deformation and failure in metals, alloys, intermetallics and polymers including: experimental techniques, deformation and failure mechanisms, dislocation-based modelling, microscopic-macroscopic averaging schemes, application to forming processes and to phase transformation, localization and failure phenomena, and computational advances. Key areas that are covered by some of the papers include modeling of material deformation at various scales. At the atomistic scale, results from MD simulations pertaining to deformation mechanisms in nano-crystalline materials as well as dislocation-defect interactions are presented. Advances in modeling of deformation in metals using discrete dislocation analyses are also presented, providing an insight into this emerging scientific technique that can be used to model deformation at the microscale. These papers address current engineering problems, including deformation of thin fIlms, dislocation behavior and strength during nanoindentation, strength in metal matrix composites, dislocation-crack interaction, development of textures in polycrystals, and problems involving twining and shape memory behavior. On Behalf of the organizing committee, I would like to thank Professor P.

Computational Methods for Fracture

Computational Methods for Fracture Book
Author : Timon Rabczuk
Publisher : MDPI
Release : 2019-10-28
ISBN : 3039216864
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Shear Localization in Granular Bodies with Micro Polar Hypoplasticity

Shear Localization in Granular Bodies with Micro Polar Hypoplasticity Book
Author : J. Tejchman
Publisher : Springer Science & Business Media
Release : 2008-09-27
ISBN : 3540705554
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book includes a numerical investigation of shear localization in granular materials within micro-polar hypoplasticity, which was carried out during my long research stay at the Institute of Soil and Rock Mechanics at Karlsruhe University from 1985 to 1996. I dedicate my book to Prof. Gerd Gudehus from Germany, the former head of the Institute of Rock and Soil Mechanics at Karlsruhe University and the supervisor of my scientific research during my stay in Karlsruhe, who encouraged me to deal with shear localization in granular bodies within micro-polar hypoplasticity. I greatly - preciate his profound knowledge, kind help constructive discussions, and collegial attitude to his co-workers. I am thankful to the both series editors: Prof. Wei Wu from Universität für Bodenkultur in Austria and Prof. Ronaldo Borja from Stanford University in USA for their helpful suggestions with respect to the contents and structure of the book. I am also grateful to Dr. Thomas Ditzinger and Mrs. Heather King from the Springer Publishing Company and SPS data processing team for their help in editing this book. Gdansk, Jacek Tejchman June 2008 Contents 1 Introduction......................................................................... 1 2 Literature Overview on Experiments........................................... 11 3 Theoretical Model.................................................................. 47 3.1 Hypoplastic Constitutive Model............................................. 47 3.2 Calibration of Hypoplastic Material Parameters........................... 60 3.3 Micro-polar Continuum........................................................ 67 3.4 Micro-polar Hypoplastic Constitutive Model.............................. 72 3.5 Finite Element Implementation................................................ 75 4 Finite Element Calculations: Preliminary Results............................

Advances in Extended and Multifield Theories for Continua

Advances in Extended and Multifield Theories for Continua Book
Author : Bernd Markert
Publisher : Springer Science & Business Media
Release : 2011-07-15
ISBN : 3642227384
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Modern computational techniques, such as the Finite Element Method, have, since their development several decades ago, successfully exploited continuum theories for numerous applications in science and technology. Although standard continuum methods based upon the Cauchy-Boltzmann continuum are still of great importance and are widely used, it increasingly appears that material properties stemming from microstructural phenomena have to be considered. This is particularly true for inhomogeneous load and deformation states, where lower-scale size effects begin to affect the macroscopic material response; something standard continuum theories fail to account for. Following this idea, it is evident that standard continuum mechanics has to be augmented to capture lower-scale structural and compositional phenomena, and to make this information accessible to macroscopic numerical simulations.

Modelling of Cohesive Frictional Materials

Modelling of Cohesive Frictional Materials Book
Author : P.A. Vermeer,W. Ehlers,H.J. Hermann,E. Ramm
Publisher : CRC Press
Release : 2007-07-05
ISBN : 1482259915
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This progressive volume of lectures, written by leading experts on current developments in the field, is a must-read for engineers in physics, mechanics and engineering applications alike. Focusing on both continuous and discontinuous modelling, this topical symposium raises the issue of cohesive-frictional materials and the importance of understan

Constitutive Modelling of Solid Continua

Constitutive Modelling of Solid Continua Book
Author : José Merodio,Raymond Ogden
Publisher : Springer Nature
Release : 2019-11-14
ISBN : 3030315479
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.

Inelastic Analysis of Structures

Inelastic Analysis of Structures Book
Author : Milan Jirasek,Zdenek P. Bazant
Publisher : John Wiley & Sons
Release : 2001-12-21
ISBN : 9780471987161
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The modeling of mechanical properties of materials and structures is a complex and wide-ranging subject. In some applications, it is sufficient to assume that the material remains elastic, i.e. that the deformation process is fully reversible and the stress is a unique function of strain. However, such a simplified assumption is appropriate only within a limited range, and in general must be replaced by a more realistic approach that takes into account the inelastic processes such as plastic yielding or cracking. This book presents a comprehensive treatment of the most important areas of plasticity and of time-dependent inelastic behavior (viscoplasticity of metals, and creep and shrinkage of concrete). It covers structural aspects such as: * incremental analysis * limit analysis * shakedown analysis * optimal design * beam structures subjected to bending and torsion * yield line theory of plates * slip line theory * size effect in structures * creep and shrinkage effects in concrete structures. The following aspects of the advanced material modeling are presented: * yield surfaces for metals and plastic-frictional materials * hardening and softening * stress-return algorithms * large-strain formulations * thermodynamic framework * microplane models * localization of plastic strain. Inelastic Analysis of Structures is a textbook for basic and advanced courses on plasticity, with a slight emphasis on structural engineering applications, but with a wealth of material for geotechnical, mechanical, aerospace, naval, petroleum and nuclear engineers. The text is constructed in a very didactical way, while the mathematics has been kept rigorous.

Multiscale Modeling of Heterogeneous Structures

Multiscale Modeling of Heterogeneous Structures Book
Author : Jurica Sorić,Peter Wriggers,Olivier Allix
Publisher : Springer
Release : 2017-11-30
ISBN : 3319654632
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.

Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures Book
Author : Nenad Bicanic,René Borst,Herbert Mang,Gunther Meschke
Publisher : CRC Press
Release : 2010-02-24
ISBN : 0203848330
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Since 1984 the EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010) has provided a forum for academic discussion of the latest theoretical, algorithmic and modelling developments associated with computational simulations of concrete and concrete structure

Direct Methods

Direct Methods Book
Author : Aurora Angela Pisano,Konstantinos Vassilios Spiliopoulos,Dieter Weichert
Publisher : Springer Nature
Release : 2020-07-16
ISBN : 3030488349
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book provides an overview of direct methods such as limit and shakedown analysis, which are intended to do away with the need for cumbersome step-by-step calculations and determine the loading limits of mechanical structures under monotone, cyclic or variable loading with unknown loading history. The respective contributions demonstrate how tremendous advances in numerical methods, especially in optimization, have contributed to the success of direct methods and their practical applicability to engineering problems in structural mechanics, pavement and general soil mechanics, as well as the design of composite materials. The content reflects the outcomes of the workshop “Direct Methods: Methodological Progress and Engineering Applications,” which was offered as a mini-symposium of PCM-CMM 2019, held in Cracow, Poland in September 2019.

Continuum Mechanics and Plasticity

Continuum Mechanics and Plasticity Book
Author : Han-Chin Wu
Publisher : CRC Press
Release : 2004-12-20
ISBN : 1135440395
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting many other challenges in the field- is a firm grasp of the principles of continuum mechanics and how they apply to the formulation of plasticity theory. Also critical is understanding the experimental aspects of plasticity and material anisotropy. Integrating the traditionally separate subjects of continuum mechanics and plasticity, this book builds understanding in all of those areas. Part I provides systematic, comprehensive coverage of continuum mechanics, from a review of Carteisian tensors to the relevant conservation laws and constitutive equation. Part II offers an exhaustive presentation of the continuum theory of plasticity. This includes a unique treatment of the experimental aspects of plasticity, covers anisotropic plasticity, and incorporates recent research results related to the endochronic theory of plasticity obtained by the author and his colleagues. By bringing all of these together in one book, Continuum Mechanics and Plasticity facilitates the learning of solid mechanics. Its readers will be well prepared for pursuing either research related to the mechanical behavior of engineering materials or developmental work in engineering analysis and design.

Building Information Modeling

Building Information Modeling Book
Author : Nawari O. Nawari,Michael Kuenstle
Publisher : CRC Press
Release : 2015-05-01
ISBN : 1138024821
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

BIM for Structural Engineering and Architecture Building Information Modeling: Framework for Structural Design outlines one of the most promising new developments in architecture, engineering, and construction (AEC). Building information modeling (BIM) is an information management and analysis technology that is changing the role of computation in the architectural and engineering industries. The innovative process constructs a database assembling all of the objects needed to build a specific structure. Instead of using a computer to produce a series of drawings that together describe the building, BIM creates a single illustration representing the building as a whole. This book highlights the BIM technology and explains how it is redefining the structural analysis and design of building structures. BIM as a Framework Enabler This book introduces a new framework—the structure and architecture synergy framework (SAS framework)—that helps develop and enhance the understanding of the fundamental principles of architectural analysis using BIM tools. Based upon three main components: the structural melody, structural poetry, and structural analysis, along with the BIM tools as the frame enabler, this new framework allows users to explore structural design as an art while also factoring in the principles of engineering. The framework stresses the influence structure can play in form generation and in defining spatial order and composition. By highlighting the interplay between architecture and structure, the book emphasizes the conceptual behaviors of structural systems and their aesthetic implications and enables readers to thoroughly understand the art and science of whole structural system concepts. Presents the use of BIM technology as part of a design process or framework that can lead to a more comprehensive, intelligent, and integrated building design Places special emphasis on the application of BIM technology for exploring the intimate relationship between structural engineering and architectural design Includes a discussion of current and emerging trends in structural engineering practice and the role of the structural engineer in building design using new BIM technologies Building Information Modeling: Framework for Structural Design provides a thorough understanding of architectural structures and introduces a new framework that revolutionizes the way building structures are designed and constructed.