Skip to main content

Flashback Mechanisms In Lean Premixed Gas Turbine Combustion

In Order to Read Online or Download Flashback Mechanisms In Lean Premixed Gas Turbine Combustion Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Flashback Mechanisms in Lean Premixed Gas Turbine Combustion

Flashback Mechanisms in Lean Premixed Gas Turbine Combustion Book
Author : Ali Cemal Benim,Khawar Jamil Syed
Publisher : Academic Press
Release : 2014-12-01
ISBN : 0128008261
Language : En, Es, Fr & De

GET BOOK

Book Description :

Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback. Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research. Presents a coherent review of flame flashback (a classic problem in premixed combustion) and its connection with the growing trend of popularity of more-efficient hydrogen-blend fuels Begins with a brief review of industrial gas turbine combustion technology Covers current environmental and economic motivations for replacing natural gas with hydrogen-blend fuels

Flashback Mechanisms in Lean Premixed Gas Turbine Combustion

Flashback Mechanisms in Lean Premixed Gas Turbine Combustion Book
Author : Ali Cemal Benim,Khawar Jamil Syed
Publisher : Academic Press
Release : 2014-12-08
ISBN : 9780128007556
Language : En, Es, Fr & De

GET BOOK

Book Description :

Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback. Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research. Presents a coherent review of flame flashback (a classic problem in premixed combustion) and its connection with the growing trend of popularity of more-efficient hydrogen-blend fuels Begins with a brief review of industrial gas turbine combustion technology Covers current environmental and economic motivations for replacing natural gas with hydrogen-blend fuels

Stabilization and Dynamic of Premixed Swirling Flames

Stabilization and Dynamic of Premixed Swirling Flames Book
Author : Paul Palies
Publisher : Academic Press
Release : 2020-07-03
ISBN : 0128199970
Language : En, Es, Fr & De

GET BOOK

Book Description :

Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications

Lean Combustion

Lean Combustion Book
Author : Derek Dunn-Rankin,Peter Therkelsen
Publisher : Academic Press
Release : 2016-07-01
ISBN : 0128005777
Language : En, Es, Fr & De

GET BOOK

Book Description :

Lean Combustion: Technology and Control, Second Edition outlines and explains the latest advances in lean combustion technology and systems. Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions. The book offers readers both the fundamentals and latest developments in how lean burn (broadly defined) can increase fuel economy and decrease emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion. Readers will learn about advances in the understanding of ultra-lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion (such as slow, difficult ignition and frequent flame extinction). This book offers abundant references and examples of real-world applications. New to this edition are significantly revised chapters on IC engines and stability/oscillations, and new case studies and examples. Written by a team of experts, this contributed reference book aims to teach its reader to maximize efficiency and minimize both economic and environmental costs. Presents a comprehensive collection of lean burn technology across potential applications, allowing readers to compare and contrast similarities and differences Provides an extensive update on IC engines including compression ignition (diesel), spark ignition, and homogeneous charge compression ignition (HCCI) Includes an extensive revision to the Stability/Oscillations chapter Includes use of alternative fuels such as biogas and hydrogen for relevant technologies Covers new developments in lean combustion using high levels of pre-heat and heat recirculating burners, as well as the active control of lean combustion instabilities

Effects of Combustion Induced Vortex Breakdown on Flashback Limits of Syngas Fueled Gas Turbine Combustors

Effects of Combustion Induced Vortex Breakdown on Flashback Limits of Syngas Fueled Gas Turbine Combustors Book
Author : Anonim
Publisher : Unknown
Release : 2011
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion Book
Author : Santanu De,Avinash Kumar Agarwal,Swetaprovo Chaudhuri,Swarnendu Sen
Publisher : Springer
Release : 2017-12-12
ISBN : 9811074100
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Recurrence Plots and Their Quantifications Expanding Horizons

Recurrence Plots and Their Quantifications  Expanding Horizons Book
Author : Charles L. Webber, Jr.,Cornel Ioana,Norbert Marwan
Publisher : Springer
Release : 2016-05-18
ISBN : 3319299220
Language : En, Es, Fr & De

GET BOOK

Book Description :

The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.

Gas Turbine Combustion

Gas Turbine Combustion Book
Author : Arthur H. Lefebvre,Dilip R. Ballal
Publisher : CRC Press
Release : 2010-04-26
ISBN : 1420086057
Language : En, Es, Fr & De

GET BOOK

Book Description :

Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to power generation. Essentially self-contained, the book only requires a moderate amount of prior knowledge of physics and chemistry. In response to the fluctuating cost and environmental effects of petroleum fuel, this third edition includes a new chapter on alternative fuels. This chapter presents the physical and chemical properties of conventional (petroleum-based) liquid and gaseous fuels for gas turbines; reviews the properties of alternative (synthetic) fuels and conventional-alternative fuel blends; and describes the influence of these different fuels and their blends on combustor performance, design, and emissions. It also discusses the special requirements of aircraft fuels and the problems encountered with fuels for industrial gas turbines. In the updated chapter on emissions, the authors highlight the quest for higher fuel efficiency and reducing carbon dioxide emissions as well as the regulations involved. Continuing to offer detailed coverage of multifuel capabilities, flame flashback, high off-design combustion efficiency, and liner failure studies, this best-selling book is the premier guide to gas turbine combustion technology. This edition retains the style that made its predecessors so popular while updating the material to reflect the technology of the twenty-first century.

Gas Turbine Emissions

Gas Turbine Emissions Book
Author : Tim C. Lieuwen,Vigor Yang
Publisher : Cambridge University Press
Release : 2013-07-08
ISBN : 1107244242
Language : En, Es, Fr & De

GET BOOK

Book Description :

The development of clean, sustainable energy systems is one of the pre-eminent issues of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage, and gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source. The book has three sections: the first section reviews major issues with gas turbine combustion, including design approaches and constraints, within the context of emissions. The second section addresses fundamental issues associated with pollutant formation, modeling, and prediction. The third section features case studies from manufacturers and technology developers, emphasizing the system-level and practical issues that must be addressed in developing different types of gas turbines that emit pollutants at acceptable levels.

Synthesis Gas Combustion

Synthesis Gas Combustion Book
Author : Tim Lieuwen,Vigor Yang,Richard Yetter
Publisher : CRC Press
Release : 2009-09-16
ISBN : 9781420085358
Language : En, Es, Fr & De

GET BOOK

Book Description :

Coal, still used to generate more than half of the electric power in the U.S., will likely be part of any future global energy plan. But this finite resource is also responsible for 80 percent of the CO2 emissions from power production, and its continued use will require improved processing techniques that are less damaging to the environment and less costly. One viable option is the use of "clean coal" energy conversion devices that rely on the combustion of gasified coal, referred to as synthesis gas, or syngas. Synthesis Gas Combustion: Fundamentals and Applications presents work from leading combustion authorities who offer their perspectives on various energy and environmental issues linked to the development of syngas and hydrogen combustion. This volume summarizes the current understanding of syngas, focusing first on combustion fundamentals and then on issues specific to application and utilization in fuel cells, internal combustion engines, and steady-flowing combustion devices such as gas turbines or boilers. In discussing syngas production, this book details the technical issues and trade-offs that influence fuel composition. It also explores combustion fundamentals of "clean coal" technologies, including chemical kinetics, flame properties, and emissions. Governments and companies around the world are devoting significant resources to improve understanding of the combustion of coal and bio-derived synthesis gases, to maximize the benefits of gasification technology and limit CO2 emissions. This valuable reference provides state-of-the-art context and technical information needed to develop clean energy systems. These include clean coal technologies, hydrogen and liquid fuel production, use of biomass feedstocks, and usage in fuel cells and other advanced power generation technologies.

Approaches for Clean Combustion in Gas Turbines

Approaches for Clean Combustion in Gas Turbines Book
Author : Medhat A. Nemitallah,Ahmed A. Abdelhafez,Mohamed A. Habib
Publisher : Springer Nature
Release : 2020-03-24
ISBN : 303044077X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.

Energy for Propulsion

Energy for Propulsion Book
Author : Akshai K. Runchal,Ashwani K. Gupta,Abhijit Kushari,Ashoke De,Suresh K. Aggarwal
Publisher : Springer
Release : 2018-07-06
ISBN : 9811074739
Language : En, Es, Fr & De

GET BOOK

Book Description :

This research book provides state-of-the-art advances in several areas of energy generation from, and environmental impact of, fuels and biofuels. It also presents novel developments in the areas of biofuels and products from various feedstock materials along with thermal management, emission control and environmental issues. Availability of clean and sustainable energy is of paramount importance in all applications of energy, power, mobility and propulsion. This book is written by internationally renowned experts from around the globe. They provide the latest innovations in cleaner energy utilization for a wide range of devices. The energy and environment sustainability requires a multipronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems and novel and environmentally friendly technologies for improved fuel use. This book serves as a good reference for practicing engineers, educators and research professionals.

GAS Turbine Combustion Second Edition

GAS Turbine Combustion  Second Edition Book
Author : Arthur H. Lefebvre
Publisher : CRC Press
Release : 1998-09-01
ISBN : 9781560326731
Language : En, Es, Fr & De

GET BOOK

Book Description :

This revised edition provides understanding of the basic physical, chemical, and aerodynamic processes associated with gas turbine combustion and their relevance and application to combustor performance and design. It also introduces the many new concepts for ultra-low emissions combustors, and new advances in fuel preparation and liner wall-cooling techniques for their success. It details advanced and practical approaches to combustor design for the clean burning of alternative liquid fuels derived from oil shades, tar sands, and coal. Additional topics include diffusers, combustion performance fuel injection, combustion noise, heat transfer, and emissions.

Journal of Engineering for Gas Turbines and Power

Journal of Engineering for Gas Turbines and Power Book
Author : Anonim
Publisher : Unknown
Release : 2009
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Journal of Engineering for Gas Turbines and Power book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Unsteady Combustor Physics

Unsteady Combustor Physics Book
Author : Tim C. Lieuwen
Publisher : Cambridge University Press
Release : 2021-09-30
ISBN : 1108841317
Language : En, Es, Fr & De

GET BOOK

Book Description :

Explore a unified treatment of the dynamics of combustor systems, including acoustics, fluid mechanics, and combustion in a single rigorous text. This updated new edition features an expansion of data and experimental material, updates the coverage of flow stability, and enhanced treatment of flame dynamics. Addresses system dynamics of clean energy and propulsion systems used in low emissions systems. Synthesizing the fields of fluid mechanics and combustion into a coherent understanding of the intrinsically unsteady processes in combustors. This is a perfect reference for engineers and researchers in fluid mechanics, combustion, and clean energy.

Oxyfuel Combustion for Clean Energy Applications

Oxyfuel Combustion for Clean Energy Applications Book
Author : Medhat A. Nemitallah,Mohamed A. Habib,Hassan M. Badr
Publisher : Springer
Release : 2019-02-11
ISBN : 3030105881
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.

Gas Turbine Powerhouse

Gas Turbine Powerhouse Book
Author : Dietrich Eckardt
Publisher : Walter de Gruyter
Release : 2013-12-20
ISBN : 3486769685
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book tells the story of the power generation gas turbine from the perspective of one of the leading companies in the field over a period of nearly 100 years, written by an engineer. Especially in times of imminent global economic crises it appears to be worthwhile to reflect on real economic values based on engineering ingenuity and enduring management of technological leadership. Though the book is primarily designed as a technical history of the BBC/ABB/Alstom power generation gas turbines, its scope is sufficiently broad to cover general development trends, including parallel competitor activities. A special benefit is the historical breakdown to the gas turbine component level, so that the book actually outlines the development of axial compressors from early beginnings, the progress in combustion technology towards extraordinary low emission values and that of axial turbines with special emphasis on early turbine cooling innovations. The sheer length of certain engineering developments over several decades allows interesting historic observations and deductions on inherent business mechanisms, the effects of technology preparations and organisational consequences. A look into the mirror of the past provides revelations on the impact of far-reaching business decisions.

Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines Book
Author : Timothy C. Lieuwen,Vigor Yang
Publisher : Progress in Astronautics and A
Release : 2005
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Advanced Computational Methods and Experiments in Heat Transfer XII

Advanced Computational Methods and Experiments in Heat Transfer XII Book
Author : B. Sundén,C.A. Brebbia,D. Poljak
Publisher : WIT Press
Release : 2012-06-27
ISBN : 1845646029
Language : En, Es, Fr & De

GET BOOK

Book Description :

Containing papers presented at the twelfth in a series of successful international conferences on Advanced Computational Methods and Experiments in Heat Transfer, this book covers the latest developments in this important field. Heat Transfer plays a major role in emerging application fields such as sustainable development and the reduction of greenhouse gases, as well as micro- and nano-scale structures and bio-engineering. Typical applications include heat exchangers, gas turbine cooling, turbulent combustion and fires, electronics cooling, melting and solidification. The nature of heat transfer problems is complex, involving many different simultaneously occurring mechanisms (e.g., heat conduction, convection, turbulence, thermal radiation. phase change). Their complexity makes it imperative that we develop reliable and accurate computational methods to replace or complement expensive and time-consuming experimental trial and error work. Tremendous advances have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and more powerful computers capable of performing efficient and rapid calculations. Nevertheless, to further progress, it will also be necessary to develop theoretical and predictive computational procedures--both basic and innovative--and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. The book includes such topics as: Heat Transfer in Energy Producing Devices; Heat Transfer Enhancement; Heat Transfer Problems; Natural and Forced Convection and Radiation; Multiphase Flow Heat Transfer; Modelling and Experiments.

Prediction of Combustion Stability and Flashback in Turbines with High Hydrogen Fuel

Prediction of Combustion Stability and Flashback in Turbines with High Hydrogen Fuel Book
Author : Anonim
Publisher : Unknown
Release : 2012
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.