Skip to main content

Ferroelectricity In Doped Hafnium Oxide Materials Properties And Devices

In Order to Read Online or Download Ferroelectricity In Doped Hafnium Oxide Materials Properties And Devices Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Ferroelectricity in Doped Hafnium Oxide

Ferroelectricity in Doped Hafnium Oxide Book
Author : Uwe Schroeder,Cheol Seong Hwang,Hiroshi Funakubo
Publisher : Woodhead Publishing
Release : 2019-03-27
ISBN : 0081024312
Language : En, Es, Fr & De

GET BOOK

Book Description :

Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face

Ferroelectricity in Doped Hafnium Oxide

Ferroelectricity in Doped Hafnium Oxide Book
Author : Uwe Schroeder,Cheol Seong Hwang,Hiroshi Funakubo
Publisher : Woodhead Publishing Limited
Release : 2019-04
ISBN : 9780081024300
Language : En, Es, Fr & De

GET BOOK

Book Description :

Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face

Negative Capacitance in Ferroelectric Materials

Negative Capacitance in Ferroelectric Materials Book
Author : Michael Hoffmann
Publisher : BoD – Books on Demand
Release : 2020-09-15
ISBN : 3751999361
Language : En, Es, Fr & De

GET BOOK

Book Description :

This dissertation investigates the phenomenon of negative capacitance in ferroelectric materials, which is promising for overcoming the fundamental limits of energy efficiency in electronics. The focus of this dissertation is on negative capacitance in hafnium oxide based ferroelectrics and the impact of ferroelectric domain formation.

Ferroelectric Gate Field Effect Transistor Memories

Ferroelectric Gate Field Effect Transistor Memories Book
Author : Byung-Eun Park,Hiroshi Ishiwara,Masanori Okuyama,Shigeki Sakai,Sung-Min Yoon
Publisher : Springer Nature
Release : 2020-03-23
ISBN : 9811512124
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.

Memristive Devices for Brain Inspired Computing

Memristive Devices for Brain Inspired Computing Book
Author : Sabina Spiga,Abu Sebastian,Damien Querlioz,Bipin Rajendran
Publisher : Woodhead Publishing
Release : 2020-06-12
ISBN : 0081027877
Language : En, Es, Fr & De

GET BOOK

Book Description :

Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications—Computational Memory, Deep Learning, and Spiking Neural Networks reviews the latest in material and devices engineering for optimizing memristive devices beyond storage applications and toward brain-inspired computing. The book provides readers with an understanding of four key concepts, including materials and device aspects with a view of current materials systems and their remaining barriers, algorithmic aspects comprising basic concepts of neuroscience as well as various computing concepts, the circuits and architectures implementing those algorithms based on memristive technologies, and target applications, including brain-inspired computing, computational memory, and deep learning. This comprehensive book is suitable for an interdisciplinary audience, including materials scientists, physicists, electrical engineers, and computer scientists. Provides readers an overview of four key concepts in this emerging research topic including materials and device aspects, algorithmic aspects, circuits and architectures and target applications Covers a broad range of applications, including brain-inspired computing, computational memory, deep learning and spiking neural networks Includes perspectives from a wide range of disciplines, including materials science, electrical engineering and computing, providing a unique interdisciplinary look at the field

Intelligent Circuits and Systems

Intelligent Circuits and Systems Book
Author : Rajesh Singh,Anita Gehlot
Publisher : CRC Press
Release : 2021-08-01
ISBN : 1000404897
Language : En, Es, Fr & De

GET BOOK

Book Description :

ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society. This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering.

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films Book
Author : Ekaterina Yurchuk
Publisher : Logos Verlag Berlin GmbH
Release : 2015-06-30
ISBN : 3832540032
Language : En, Es, Fr & De

GET BOOK

Book Description :

Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2 thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

Advances in Non volatile Memory and Storage Technology

Advances in Non volatile Memory and Storage Technology Book
Author : Yoshio Nishi,Blanka Magyari-Kope
Publisher : Woodhead Publishing
Release : 2019-06-15
ISBN : 0081025858
Language : En, Es, Fr & De

GET BOOK

Book Description :

Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory

Formation of Ferroelectricity in Hafnium Oxide Based Thin Films

Formation of Ferroelectricity in Hafnium Oxide Based Thin Films Book
Author : Tony Schenk
Publisher : BoD – Books on Demand
Release : 2017-03-15
ISBN : 3743127296
Language : En, Es, Fr & De

GET BOOK

Book Description :

In 2011, Böscke et al. reported the unexpected discovery of ferroelectric properties in hafnia based thin films, which has since initiated many further studies and revitalized research on the topic of ferroelectric memories. In spite of many efforts, the unveiling of the fundamentals behind this surprising discovery has proven rather challenging. In this work, the originally claimed Pca21 phase is experimentally proven to be the root of the ferroelectric properties and the nature of this ferroelectricity is classified in the frame of existing concepts of ferroelectric materials. Parameters to stabilize this polar phase are examined from a theoretical and fabrication point of view. With these very basic questions addressed, the application relevant electric field cycling behavior is studied. The results of first-order reversal curves, impedance spectroscopy, scanning transmission electron microscopy and piezoresponse force microscopy significantly advance the understanding of structural mechanisms underlying wake-up, fatigue and the novel phenomenon of split-up/merging of transient current peaks. The impact of field cycling behavior on applications like ferroelectric memories is highlighted and routes to optimize it are derived. These findings help to pave the road for a successful commercialization of hafnia based ferroelectrics.

Electrical Characterisation of Ferroelectric Field Effect Transistors Based on Ferroelectric HfO2 Thin Films

Electrical Characterisation of Ferroelectric Field Effect Transistors Based on Ferroelectric HfO2 Thin Films Book
Author : Ekaterina Yurchuk
Publisher : Unknown
Release : 2015
ISBN : 9783832594787
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Electrical Characterisation of Ferroelectric Field Effect Transistors Based on Ferroelectric HfO2 Thin Films book written by Ekaterina Yurchuk, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Deep Learning Classifiers with Memristive Networks

Deep Learning Classifiers with Memristive Networks Book
Author : Alex Pappachen James
Publisher : Springer
Release : 2019-04-08
ISBN : 3030145247
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Inorganic Nanomaterials for Supercapacitor Design

Inorganic Nanomaterials for Supercapacitor Design Book
Author : Dr. Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah Mohamed Asiri
Publisher : CRC Press
Release : 2019-12-20
ISBN : 100075121X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features:  Provides an overview on the supercapacitor application of inorganic-based materials.  Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors.  Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors.  Surveys current applications in supercapacitor energy storage.  Explores the new aspects of inorganic materials and next-generation supercapacitor systems.

Development of HfO2 Based Ferroelectric Memories for Future CMOS Technology Nodes

Development of HfO2 Based Ferroelectric Memories for Future CMOS Technology Nodes Book
Author : Stefan Ferdinand Müller
Publisher : BoD – Books on Demand
Release : 2016-04-08
ISBN : 3739248947
Language : En, Es, Fr & De

GET BOOK

Book Description :

This thesis evaluates the viability of ferroelectric Si:HfO2 and its derived FeFET application for non-volatile data storage. At the beginning, the ferroelectric effect is explained briefly such that the applications that make use of it can be understood. Afterwards, the latest findings on ferroelectric HfO2 are reviewed and their potential impact on future applications is discussed. Experimental data is presented afterwards focusing on the ferroelectric material characteristics of Si:HfO2 that are most relevant for memory applications. Besides others, the stability of the ferroelectric switching effect could be demonstrated in a temperature range of almost 400 K. Moreover, nanosecond switching speed and endurance in the range of 1 million to 10 billion cycles could be proven. Retention and imprint characteristics have furthermore been analyzed and are shown to be stable for 1000 hours bake time at 125 oC. Derived from the ferroelectric effect in HfO2, a 28 nm FeFET memory cell is introduced as the central application of this thesis. Based on numerical simulations, the memory concept is explained and possible routes towards an optimized FeFET cell are discussed. Subsequently, the results from electrical characterization of FeFET multi-structures are presented and discussed. By using Si:HfO2 it was possible to realize the world's first 28 nm FeFET devices possessing i.a. 10k cycling endurance and an extrapolated 10 year data retention at room temperature. The next step towards a FeFET memory is represented by connecting several memory cells into matrix-type configurations. A cell concept study illustrates the different ways in which FeFET cells can be combined together to give high density memory arrays. For the proposed architectures, operational schemes are theoretically discussed and analyzed by both electrical characterization of FeFET multi-structures and numerical simulations. The thesis concludes with the electrical characterization of small FeFET memory arrays. First results show that a separation between memory states can be achieved by applying poling and incremental step pulse programming (ISPP) sequences. These results represent an important cornerstone for future studies on Si:HfO2 and its related applications.

Gate Stack Engineering for Emerging Polarization based Non volatile Memories

Gate Stack Engineering for Emerging Polarization based Non volatile Memories Book
Author : Milan Pesic
Publisher : BoD – Books on Demand
Release : 2017-07-14
ISBN : 3744867889
Language : En, Es, Fr & De

GET BOOK

Book Description :

The hafnium based ferroelectric memories offer a low power consumption, ultra-fast operation, non-volatile retention as well as the small relative cell size as the main requirements for future memories. These remarkable properties of ferroelectric memories make them promising candidates for non-volatile memories that would bridge the speed gap between fast logic and slow off-chip, long term storage. Even though the retention of hafnia based ferroelectric memories can be extrapolated to a ten-year specification target, they suffer from a rather limited endurance. Therefore, this work targets relating the field cycling behavior of hafnia based ferroelectric memories to the physical mechanisms taking place within the film stack. Establishing a correlation between the performance of the device and underlying physical mechanisms is the first step toward understanding the device and engineering guidelines for novel, superior devices. In the frame of this work, an in-depth ferroelectric and dielectric characterization, analysis and TEM study was combined with comprehensive modeling approach. Drift and diffusion based vacancy redistribution was found as the main cause for the phase transformation and consequent increase of the remnant polarization, while domain pinning and defect generation is identified to be responsible for the device fatigue. Finally, based on Landau theory, a simple way to utilize the high endurance strength of anti-ferroelectric (AFE) materials and achieve non-volatility in state-of-the-art DRAM stacks was proposed and the fabrication of the world's first non-volatile AFE-RAM is reported. These findings represent an important milestone and pave the way toward a commercialization of (anti)ferroelectric non-volatile memories based on simple binary-oxides.

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications Book
Author : Soumen Das,Sandip Dhara
Publisher : Elsevier
Release : 2021-01-09
ISBN : 012823170X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Ferroelectric Materials for Energy Harvesting and Storage

Ferroelectric Materials for Energy Harvesting and Storage Book
Author : Deepam Maurya,Abhijit Pramanick,Dwight Viehland
Publisher : Woodhead Publishing
Release : 2020-10-23
ISBN : 0081028792
Language : En, Es, Fr & De

GET BOOK

Book Description :

The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines. Reviews wide range of energy harvesting including solar, wind, biomechanical and more Discusses ferroelectric materials and their application to high energy density capacitors Includes review of fundamental mechanisms of energy harvesting and energy solutions, their design and current applications, and future trends and challenges

Advanced Materials

Advanced Materials Book
Author : Ivan A. Parinov,Shun-Hsyung Chang,Banh Tien Long
Publisher : Springer Nature
Release : 2020-06-16
ISBN : 3030451208
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents selected peer-reviewed contributions from the 2019 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019 (Hanoi, Vietnam, 7–10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical–mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.

Oxide Based Materials and Structures

Oxide Based Materials and Structures Book
Author : Rada Savkina,Larysa Khomenkova
Publisher : CRC Press
Release : 2020-05-07
ISBN : 1000054314
Language : En, Es, Fr & De

GET BOOK

Book Description :

Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches

CMOS and Beyond

CMOS and Beyond Book
Author : Tsu-Jae King Liu,Kelin Kuhn
Publisher : Cambridge University Press
Release : 2015-02-05
ISBN : 1107043182
Language : En, Es, Fr & De

GET BOOK

Book Description :

Get up to speed with the future of logic switch design with this indispensable introduction to post-CMOS technologies.

Metal Oxide Varistors

Metal Oxide Varistors Book
Author : Jinliang He
Publisher : John Wiley & Sons
Release : 2019-02-08
ISBN : 3527684050
Language : En, Es, Fr & De

GET BOOK

Book Description :

Completely up-to-date, this is the first comprehensive monograph on metal oxide varistors with a focus on microstructure, conduction mechanisms, device failures, ageing, additive impacts and future varistor systems. As such, it covers the fundamentals and applications of metal oxide varistors, including their macro-characteristics, microstructural properties and the device-internal physical and electrical mechanisms. The author reflects on the achievements made in varistor research and propose new approaches to analyze and predict the macro-characteristics, employing such methods as micro-contact measurements and numerical simulations. In addition, he looks at future directions for varistor research, such as ZnO varistors with a high voltage gradient and low residual voltage and further varistor types based on TiO2 and SnO2.