Skip to main content

Entity Resolution And Information Quality

Download Entity Resolution And Information Quality Full eBooks in PDF, EPUB, and kindle. Entity Resolution And Information Quality is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Entity Resolution and Information Quality

Entity Resolution and Information Quality Book
Author : John R. Talburt
Publisher : Elsevier
Release : 2011-01-14
ISBN : 9780123819734
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Entity Resolution and Information Quality presents topics and definitions, and clarifies confusing terminologies regarding entity resolution and information quality. It takes a very wide view of IQ, including its six-domain framework and the skills formed by the International Association for Information and Data Quality {IAIDQ). The book includes chapters that cover the principles of entity resolution and the principles of Information Quality, in addition to their concepts and terminology. It also discusses the Fellegi-Sunter theory of record linkage, the Stanford Entity Resolution Framework, and the Algebraic Model for Entity Resolution, which are the major theoretical models that support Entity Resolution. In relation to this, the book briefly discusses entity-based data integration (EBDI) and its model, which serve as an extension of the Algebraic Model for Entity Resolution. There is also an explanation of how the three commercial ER systems operate and a description of the non-commercial open-source system known as OYSTER. The book concludes by discussing trends in entity resolution research and practice. Students taking IT courses and IT professionals will find this book invaluable. First authoritative reference explaining entity resolution and how to use it effectively Provides practical system design advice to help you get a competitive advantage Includes a companion site with synthetic customer data for applicatory exercises, and access to a Java-based Entity Resolution program.

Data Matching

Data Matching Book
Author : Peter Christen
Publisher : Springer Science & Business Media
Release : 2012-07-04
ISBN : 3642311644
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.

Entity Resolution in the Web of Data

Entity Resolution in the Web of Data Book
Author : Vassilis Christophides,Vasilis Efthymiou,Kostas Stefanidis
Publisher : Springer Nature
Release : 2022-05-31
ISBN : 3031794680
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In recent years, several knowledge bases have been built to enable large-scale knowledge sharing, but also an entity-centric Web search, mixing both structured data and text querying. These knowledge bases offer machine-readable descriptions of real-world entities, e.g., persons, places, published on the Web as Linked Data. However, due to the different information extraction tools and curation policies employed by knowledge bases, multiple, complementary and sometimes conflicting descriptions of the same real-world entities may be provided. Entity resolution aims to identify different descriptions that refer to the same entity appearing either within or across knowledge bases. The objective of this book is to present the new entity resolution challenges stemming from the openness of the Web of data in describing entities by an unbounded number of knowledge bases, the semantic and structural diversity of the descriptions provided across domains even for the same real-world entities, as well as the autonomy of knowledge bases in terms of adopted processes for creating and curating entity descriptions. The scale, diversity, and graph structuring of entity descriptions in the Web of data essentially challenge how two descriptions can be effectively compared for similarity, but also how resolution algorithms can efficiently avoid examining pairwise all descriptions. The book covers a wide spectrum of entity resolution issues at the Web scale, including basic concepts and data structures, main resolution tasks and workflows, as well as state-of-the-art algorithmic techniques and experimental trade-offs.

Innovative Techniques and Applications of Entity Resolution

Innovative Techniques and Applications of Entity Resolution Book
Author : Wang, Hongzhi
Publisher : IGI Global
Release : 2014-02-28
ISBN : 1466651997
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Entity resolution is an essential tool in processing and analyzing data in order to draw precise conclusions from the information being presented. Further research in entity resolution is necessary to help promote information quality and improved data reporting in multidisciplinary fields requiring accurate data representation. Innovative Techniques and Applications of Entity Resolution draws upon interdisciplinary research on tools, techniques, and applications of entity resolution. This research work provides a detailed analysis of entity resolution applied to various types of data as well as appropriate techniques and applications and is appropriately designed for students, researchers, information professionals, and system developers.

Information Quality and Governance for Business Intelligence

Information Quality and Governance for Business Intelligence Book
Author : Yeoh, William
Publisher : IGI Global
Release : 2013-12-31
ISBN : 1466648937
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Business intelligence initiatives have been dominating the technology priority list of many organizations. However, the lack of effective information quality and governance strategies and policies has been meeting these initiatives with some challenges. Information Quality and Governance for Business Intelligence presents the latest exchange of academic research on all aspects of practicing and managing information using a multidisciplinary approach that examines its quality for organizational growth. This book is an essential reference tool for researchers, practitioners, and university students specializing in business intelligence, information quality, and information systems.

Data Quality and Record Linkage Techniques

Data Quality and Record Linkage Techniques Book
Author : Thomas N. Herzog,Fritz J. Scheuren,William E. Winkler
Publisher : Springer Science & Business Media
Release : 2007-05-23
ISBN : 0387695052
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book offers a practical understanding of issues involved in improving data quality through editing, imputation, and record linkage. The first part of the book deals with methods and models, focusing on the Fellegi-Holt edit-imputation model, the Little-Rubin multiple-imputation scheme, and the Fellegi-Sunter record linkage model. The second part presents case studies in which these techniques are applied in a variety of areas, including mortgage guarantee insurance, medical, biomedical, highway safety, and social insurance as well as the construction of list frames and administrative lists. This book offers a mixture of practical advice, mathematical rigor, management insight and philosophy.

Information Quality in Information Fusion and Decision Making

Information Quality in Information Fusion and Decision Making Book
Author : Éloi Bossé,Galina L. Rogova
Publisher : Springer
Release : 2019-04-02
ISBN : 303003643X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book presents a contemporary view of the role of information quality in information fusion and decision making, and provides a formal foundation and the implementation strategies required for dealing with insufficient information quality in building fusion systems for decision making. Information fusion is the process of gathering, processing, and combining large amounts of information from multiple and diverse sources, including physical sensors to human intelligence reports and social media. That data and information may be unreliable, of low fidelity, insufficient resolution, contradictory, fake and/or redundant. Sources may provide unverified reports obtained from other sources resulting in correlations and biases. The success of the fusion processing depends on how well knowledge produced by the processing chain represents reality, which in turn depends on how adequate data are, how good and adequate are the models used, and how accurate, appropriate or applicable prior and contextual knowledge is. By offering contributions by leading experts, this book provides an unparalleled understanding of the problem of information quality in information fusion and decision-making for researchers and professionals in the field.

Entity Information Life Cycle for Big Data

Entity Information Life Cycle for Big Data Book
Author : John R. Talburt,Yinle Zhou
Publisher : Morgan Kaufmann
Release : 2015-04-20
ISBN : 012800665X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data’s impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems Offers practical guidance to help you design and build an EIM system that will successfully handle big data Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions

Information Quality Management

Information Quality Management Book
Author : Latif Al-Hakim
Publisher : IGI Global
Release : 2007-01-01
ISBN : 1599040247
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Technologies such as the Internet and mobile commerce bring with them ubiquitous connectivity, real-time access, and overwhelming volumes of data and information. The growth of data warehouses and communication and information technologies has increased the need for high information quality management in organizations. Information Quality Management: Theory and Applications provides solutions to information quality problems becoming increasingly prevalent.Information Quality Management: Theory and Applications provides insights and support for professionals and researchers working in the field of information and knowledge management, information quality, practitioners and managers of manufacturing, and service industries concerned with the management of information.

Advances in Information and Communication

Advances in Information and Communication Book
Author : Kohei Arai
Publisher : Springer Nature
Release : 2021-04-15
ISBN : 3030731030
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book aims to provide an international forum for scholarly researchers, practitioners and academic communities to explore the role of information and communication technologies and its applications in technical and scholarly development. The conference attracted a total of 464 submissions, of which 152 submissions (including 4 poster papers) have been selected after a double-blind review process. Academic pioneering researchers, scientists, industrial engineers and students will find this series useful to gain insight into the current research and next-generation information science and communication technologies. This book discusses the aspects of communication, data science, ambient intelligence, networking, computing, security and Internet of things, from classical to intelligent scope. The authors hope that readers find the volume interesting and valuable; it gathers chapters addressing tate-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.

Information Quality

Information Quality Book
Author : Ron S. Kenett,Galit Shmueli
Publisher : John Wiley & Sons
Release : 2016-10-13
ISBN : 1118890647
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.

Handbook of Data Quality

Handbook of Data Quality Book
Author : Shazia Sadiq
Publisher : Springer Science & Business Media
Release : 2013-08-13
ISBN : 3642362575
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.

Executing Data Quality Projects

Executing Data Quality Projects Book
Author : Danette McGilvray
Publisher : Academic Press
Release : 2021-05-27
ISBN : 0128180161
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today’s data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization’s standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach Contains real examples from around the world, gleaned from the author’s consulting practice and from those who implemented based on her training courses and the earlier edition of the book Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

Special Issue on Entity Resolution

Special Issue on Entity Resolution Book
Author : John R. Talburt
Publisher : Unknown
Release : 2013
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download Special Issue on Entity Resolution book written by John R. Talburt, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Information Technology New Generations

Information Technology  New Generations Book
Author : Shahram Latifi
Publisher : Springer
Release : 2016-03-28
ISBN : 3319324675
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book collects articles presented at the 13th International Conference on Information Technology- New Generations, April, 2016, in Las Vegas, NV USA. It includes over 100 chapters on critical areas of IT including Web Technology, Communications, Security, and Data Mining.

ITNG 2022 19th International Conference on Information Technology New Generations

ITNG 2022 19th International Conference on Information Technology New Generations Book
Author : Shahram Latifi
Publisher : Springer Nature
Release : 2022-10-04
ISBN : 3030976521
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Download ITNG 2022 19th International Conference on Information Technology New Generations book written by Shahram Latifi, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Entity Resolution in the Web of Data

Entity Resolution in the Web of Data Book
Author : Vassilis Christophides,Vasilis Efthymiou,Kostas Stefanidis
Publisher : Morgan & Claypool Publishers
Release : 2015-08-01
ISBN : 1627058044
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

In recent years, several knowledge bases have been built to enable large-scale knowledge sharing, but also an entity-centric Web search, mixing both structured data and text querying. These knowledge bases offer machine-readable descriptions of real-world entities, e.g., persons, places, published on the Web as Linked Data. However, due to the different information extraction tools and curation policies employed by knowledge bases, multiple, complementary and sometimes conflicting descriptions of the same real-world entities may be provided. Entity resolution aims to identify different descriptions that refer to the same entity appearing either within or across knowledge bases. The objective of this book is to present the new entity resolution challenges stemming from the openness of the Web of data in describing entities by an unbounded number of knowledge bases, the semantic and structural diversity of the descriptions provided across domains even for the same real-world entities, as well as the autonomy of knowledge bases in terms of adopted processes for creating and curating entity descriptions. The scale, diversity, and graph structuring of entity descriptions in the Web of data essentially challenge how two descriptions can be effectively compared for similarity, but also how resolution algorithms can efficiently avoid examining pairwise all descriptions. The book covers a wide spectrum of entity resolution issues at the Web scale, including basic concepts and data structures, main resolution tasks and workflows, as well as state-of-the-art algorithmic techniques and experimental trade-offs.

Foundations of Information and Knowledge Systems

Foundations of Information and Knowledge Systems Book
Author : Thomas Lukasiewicz,Attila Sali
Publisher : Springer
Release : 2012-02-29
ISBN : 3642284728
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book constitutes the proceedings of the 7th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2012, held in Kiel, Germany, in March 2012. The 12 regular and 8 short papers, presented together with two invited talks in full paper-length, were carefully reviewed and selected from 53 submissions. The contributions cover foundational aspects of information and knowledge systems. These include the application of ideas, theories or methods from specific disciplines to information and knowledge systems, such as discrete mathematics, logic and algebra, model theory, informaiton theory, complexity theory, algorithmics and computation, statistics, and optimization.

Handbook of Research on Big Data Storage and Visualization Techniques

Handbook of Research on Big Data Storage and Visualization Techniques Book
Author : Segall, Richard S.,Cook, Jeffrey S.
Publisher : IGI Global
Release : 2018-01-05
ISBN : 1522531432
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement Book
Author : Laura Sebastian-Coleman
Publisher : Newnes
Release : 2012-12-31
ISBN : 0123977541
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You’ll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You’ll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation