Skip to main content

Discrete Time Neural Observers

In Order to Read Online or Download Discrete Time Neural Observers Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Discrete Time Neural Observers

Discrete Time Neural Observers Book
Author : Edgar Sanchez,Alma Alanis
Publisher : Academic Press
Release : 2017-03-01
ISBN : 9780128105436
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering. Presents online learning for Recurrent High Order Neural Networks (RHONN) using the Extended Kalman Filter (EKF) algorithm Contains full and reduced order neural observers for discrete-time unknown nonlinear systems, with and without delays Includes rigorous analyses of the proposed schemes, including the nonlinear system, the respective observer, and the Kalman filter learning Covers real-time implementation and simulation results for all the proposed schemes to meaningful applications

Discrete Time High Order Neural Control

Discrete Time High Order Neural Control Book
Author : Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Loukianov
Publisher : Springer
Release : 2008-06-24
ISBN : 3540782893
Language : En, Es, Fr & De

GET BOOK

Book Description :

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Discrete Time Neural Observers

Discrete Time Neural Observers Book
Author : Alma Y. Alanis,Edgar N Sanchez
Publisher : Academic Press
Release : 2017-02-06
ISBN : 0128105445
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering. Presents online learning for Recurrent High Order Neural Networks (RHONN) using the Extended Kalman Filter (EKF) algorithm Contains full and reduced order neural observers for discrete-time unknown nonlinear systems, with and without delays Includes rigorous analyses of the proposed schemes, including the nonlinear system, the respective observer, and the Kalman filter learning Covers real-time implementation and simulation results for all the proposed schemes to meaningful applications

Discrete Time High Order Neural Control

Discrete Time High Order Neural Control Book
Author : Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Loukianov
Publisher : Springer
Release : 2009-08-29
ISBN : 9783540870753
Language : En, Es, Fr & De

GET BOOK

Book Description :

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Discrete time Neural Network Based State Observer with Neural Network Based Control Formulation for a Class of Systems with Unmatched Uncertainties

Discrete time Neural Network Based State Observer with Neural Network Based Control Formulation for a Class of Systems with Unmatched Uncertainties Book
Author : Jason Michael Stumfoll
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

"An observer is a dynamic system that estimates the state variables of another system using noisy measurements, either to estimate unmeasurable states, or to improve the accuracy of the state measurements. The Modified State Observer (MSO) is a technique that uses a standard observer structure modified to include a neural network to estimate system states as well as system uncertainty. It has been used in orbit uncertainty estimation and atmospheric reentry uncertainty estimation problems to correctly estimate unmodeled system dynamics. A form of the MSO has been used to control a nonlinear electrohydraulic system with parameter uncertainty using a simplified linear model. In this paper an extension of the MSO into discrete-time is developed using Lyapunov stability theory. Discrete-time systems are found in all digital hardware implementations, such as that found in a Martian rover, a quadcopter UAV, or digital flight control systems, and have the added benefit of reduced computation time compared to continuous systems. The derived adaptive update law guarantees stability of the error dynamics and boundedness of the neural network weights. To prove the validity of the discrete-time MSO (DMSO) simulation studies are performed using a two wheeled inverted pendulum (TWIP) robot, an unstable nonlinear system with unmatched uncertainties. Using a linear model with parameter uncertainties, the DMSO is shown to correctly estimate the state of the system as well as the system uncertainty, providing state estimates orders of magnitude more accurate, and in periods of time up to 10 times faster than the Discrete Kalman Filter. The DMSO is implemented on an actual TWIP robot to further validate the performance and demonstrate the applicability to discrete-time systems found in many aerospace applications. Additionally, a new form of neural network control is developed to compensate for the unmatched uncertainties that exist in the TWIP system using a state variable as a virtual control input. It is shown that in all cases the neural network based control assists with the controller effectiveness, resulting in the most effective controller, performing on average 53.1% better than LQR control alone"--Abstract, page iii.

Robust Discrete Time Flight Control of UAV with External Disturbances

Robust Discrete Time Flight Control of UAV with External Disturbances Book
Author : Shuyi Shao,Mou Chen,Peng Shi
Publisher : Springer Nature
Release : 2020-09-26
ISBN : 3030579573
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Robust Discrete Time Flight Control of UAV with External Disturbances

Robust Discrete Time Flight Control of UAV with External Disturbances Book
Author : Shuyi Shao,Mou Chen,Peng Shi
Publisher : Springer
Release : 2020-11-25
ISBN : 9783030579562
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Emerging Capabilities and Applications of Artificial Higher Order Neural Networks

Emerging Capabilities and Applications of Artificial Higher Order Neural Networks Book
Author : Zhang, Ming
Publisher : IGI Global
Release : 2021-02-05
ISBN : 1799835650
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields. Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.

Artificial Neural Networks for Engineering Applications

Artificial Neural Networks for Engineering Applications Book
Author : Alma Y. Alanis,Nancy Arana-Daniel,Carlos Lopez-Franco
Publisher : Academic Press
Release : 2019-02-07
ISBN : 0128182482
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications. Presents the current trends for the solution of complex engineering problems that cannot be solved through conventional methods Includes real-life scenarios where a wide range of artificial neural network architectures can be used to solve the problems encountered in engineering Contains all the theory required to use the proposed methodologies for different applications

Discrete Time Recurrent Neural Control

Discrete Time Recurrent Neural Control Book
Author : Edgar N. Sanchez
Publisher : CRC Press
Release : 2018-09-03
ISBN : 1351377426
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Artificial Higher Order Neural Networks for Modeling and Simulation

Artificial Higher Order Neural Networks for Modeling and Simulation Book
Author : Zhang, Ming
Publisher : IGI Global
Release : 2012-10-31
ISBN : 1466621761
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Discrete Time Inverse Optimal Control for Nonlinear Systems

Discrete Time Inverse Optimal Control for Nonlinear Systems Book
Author : Edgar N. Sanchez,Fernando Ornelas-Tellez
Publisher : CRC Press
Release : 2017-12-19
ISBN : 1351831801
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Applied Artificial Higher Order Neural Networks for Control and Recognition

Applied Artificial Higher Order Neural Networks for Control and Recognition Book
Author : Zhang, Ming
Publisher : IGI Global
Release : 2016-05-05
ISBN : 1522500642
Language : En, Es, Fr & De

GET BOOK

Book Description :

In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.

Issues in Tissue Engineering and Transplant and Transfusion Medicine 2011 Edition

Issues in Tissue Engineering and Transplant and Transfusion Medicine  2011 Edition Book
Author : Anonim
Publisher : ScholarlyEditions
Release : 2012-01-09
ISBN : 1464964882
Language : En, Es, Fr & De

GET BOOK

Book Description :

Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Tissue Engineering and Transplant and Transfusion Medicine. The editors have built Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Tissue Engineering and Transplant and Transfusion Medicine in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Neural Networks Modeling and Control

Neural Networks Modeling and Control Book
Author : Jorge D. Rios,Alma Y. Alanis,Nancy Arana-Daniel,Carlos Lopez-Franco
Publisher : Academic Press
Release : 2020-01-15
ISBN : 0128170794
Language : En, Es, Fr & De

GET BOOK

Book Description :

Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends

Network and Communication Technology Innovations for Web and IT Advancement

Network and Communication Technology Innovations for Web and IT Advancement Book
Author : Alkhatib, Ghazi I.
Publisher : IGI Global
Release : 2012-10-31
ISBN : 1466621583
Language : En, Es, Fr & De

GET BOOK

Book Description :

With the steady stream of new web based information technologies being introduced to organizations, the need for network and communication technologies to provide an easy integration of knowledge and information sharing is essential. Network and Communication Technology Innovations for Web and IT Advancement presents studies on trends, developments, and methods on information technology advancements through network and communication technology. This collection brings together integrated approaches for communication technology and usage for web and IT advancements.

Neural Network Control of Nonlinear Discrete Time Systems

Neural Network Control of Nonlinear Discrete Time Systems Book
Author : Jagannathan Sarangapani
Publisher : CRC Press
Release : 2018-10-03
ISBN : 1420015451
Language : En, Es, Fr & De

GET BOOK

Book Description :

Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Intelligent Automatic Generation Control

Intelligent Automatic Generation Control Book
Author : Hassan Bevrani,Takashi Hiyama
Publisher : CRC Press
Release : 2017-12-19
ISBN : 1439849544
Language : En, Es, Fr & De

GET BOOK

Book Description :

Automatic generation control (AGC) is one of the most important control problems in the design and operation of interconnected power systems. Its significance continues to grow as a result of several factors: the changing structure and increasing size, complexity, and functionality of power systems, the rapid emergence (and uncertainty) of renewable energy sources, developments in power generation/consumption technologies, and environmental constraints. Delving into the fundamentals of power system AGC, Intelligent Automatic Generation Control explores ways to make the infrastructures of tomorrow smarter and more flexible. These frameworks must be able to handle complex multi-objective regulation optimization problems, and they must be highly diversified in terms of policies, control strategies, and wide distribution in demand and supply sources—all via an intelligent scheme. The core of such intelligent systems should be based on efficient, adaptable algorithms, advanced information technology, and fast communication devices to ensure that the AGC systems can maintain generation-load balance following serious disturbances. This book addresses several new schemes using intelligent control techniques for simultaneous minimization of system frequency deviation and tie-line power changes, which is required for successful operation of interconnected power systems. It also concentrates on physical and engineering aspects and examines several developed control strategies using real-time simulations. This reference will prove useful for engineers and operators in power system planning and operation, as well as academic researchers and students in field of electrical engineering.

Advances in Computational Intelligence

Advances in Computational Intelligence Book
Author : Wen Yu,Edgar N. Sanchez
Publisher : Springer Science & Business Media
Release : 2009-08-18
ISBN : 3642031560
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the proceedings of the second International Workshop on Advanced Computational Intelligence (IWACI 2009), with a sequel of IWACI 2008 successfully held in Macao, China. IWACI 2009 provided a high-level international forum for scientists, engineers, and educators to present state-of-the-art research in computational intelligence and related fields. Over the past decades, computational intelligence community has witnessed t- mendous efforts and developments in all aspects of theoretical foundations, archit- tures and network organizations, modelling and simulation, empirical study, as well as a wide range of applications across different domains. IWACI 2009 provided a great platform for the community to share their latest research results, discuss critical future research directions, stimulate innovative research ideas, as well as facilitate inter- tional multidisciplinary collaborations. IWACI 2009 received 146 submissions from about 373 authors in 26 countries and regions (Australia, Brazil, Canada, China, Chile, Hong Kong, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Pakistan, Philippines, Qatar, Republic of Korea, Singapore, South Africa, Sri Lanka, Spain, Taiwan, Thailand, UK, USA, Ve- zuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on the rigorous peer reviews by the Program Committee members, 52 high-quality papers were selected for publication in this book, with an acceptance rate of 36.3%. These papers cover major topics of the theoretical research, empirical study, and applications of computational intelligence.

Advances in Neural Network Research and Applications

Advances in Neural Network Research and Applications Book
Author : Zhigang Zeng,Jun Wang
Publisher : Springer Science & Business Media
Release : 2010-05-10
ISBN : 9783642129902
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challenges of future neural network research. Over the past decades, the neural network community has witnessed significant breakthroughs and developments from all aspects of neural network research, including theoretical foundations, architectures, and network organizations, modeling and simulation, empirical studies, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, has provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large scale, and networked brain-like intelligent systems. This long-term goals can only be achieved with the continuous efforts from the community to seriously investigate various issues on neural networks and related topics.