Skip to main content

Data Science

In Order to Read Online or Download Data Science Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Roundtable on Data Science Postsecondary Education

Roundtable on Data Science Postsecondary Education Book
Author : National Academies of Sciences, Engineering, and Medicine,Division of Behavioral and Social Sciences and Education,Division on Engineering and Physical Sciences,Board on Science Education,Computer Science and Telecommunications Board,Committee on Applied and Theoretical Statistics,Board on Mathematical Sciences and Analytics
Publisher : National Academies Press
Release : 2020-10-02
ISBN : 030967770X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.

Practical Data Science

Practical Data Science Book
Author : Andreas François Vermeulen
Publisher : Apress
Release : 2018-02-21
ISBN : 148423054X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers

Data Science For Dummies

Data Science For Dummies Book
Author : Lillian Pierson,Ryan Swanstrom,Carl Anderson
Publisher : John Wiley & Sons
Release : 2015-03-09
ISBN : 1118841557
Language : En, Es, Fr & De

GET BOOK

Book Description :

"Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles in organizations. Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization."--Provided by publisher.

Introduction to Biomedical Data Science

Introduction to Biomedical Data Science Book
Author : Robert Hoyt,Robert Muenchen
Publisher : Lulu.com
Release : 2019-11-25
ISBN : 179476173X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Introduction to Biomedical Data Science aims to fill the data science knowledge gap experienced by many clinical, administrative and technical staff. The textbook begins with an overview of what biomedical data science is and then embarks on a tour of topics beginning with spreadsheet tips and tricks and ending with artificial intelligence. In between, important topics are covered such as biostatistics, data visualization, database systems, big data, programming languages, bioinformatics, and machine learning. The textbook is available as a paperback and ebook. Visit the companion website at https: //www.informaticseducation.org for more information. Key features: Real healthcare datasets are used for examples and exercises; Knowledge of a programming language or higher math is not required; Multiple free or open source software programs are presented; YouTube videos are embedded in most chapters; Extensive resources chapter for further reading and learning; PowerPoints and an Instructor Manual

Data Science and Digital Business

Data Science and Digital Business Book
Author : Fausto Pedro García Márquez,Benjamin Lev
Publisher : Springer
Release : 2019-01-04
ISBN : 3319956515
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.

Data Science for Business Professionals

Data Science for Business Professionals Book
Author : Probyto Data Science and Consulting Pvt. Ltd.
Publisher : BPB Publications
Release : 2020-05-06
ISBN : 9389423287
Language : En, Es, Fr & De

GET BOOK

Book Description :

Primer into the multidisciplinary world of Data Science KEY FEATURES - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTION The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset. WHAT WILL YOU LEARN - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FOR This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science. TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business Intelligence 16. Data Visualization Tools 17. Industry Use Case 1 – FormAssist 18. Industry Use Case 2 – PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments

Data Science Applied to Sustainability Analysis

Data Science Applied to Sustainability Analysis Book
Author : Jennifer Dunn,Prasanna Balaprakash
Publisher : Elsevier
Release : 2021-05-28
ISBN : 0128179775
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery Includes considerations sustainability analysts must evaluate when applying big data Features case studies illustrating the application of data science in sustainability analyses

Data Science from Scratch

Data Science from Scratch Book
Author : Joel Grus
Publisher : O'Reilly Media
Release : 2019-04-12
ISBN : 1492041106
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Agile Data Science

Agile Data Science Book
Author : Russell Jurney
Publisher : "O'Reilly Media, Inc."
Release : 2013-10-15
ISBN : 1449326919
Language : En, Es, Fr & De

GET BOOK

Book Description :

Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track

Data Science and Analytics with Python

Data Science and Analytics with Python Book
Author : Jesus Rogel-Salazar
Publisher : CRC Press
Release : 2018-02-05
ISBN : 1351647717
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as SciKit-learn, Pandas, Numpy, and others. The use of Python is of particular interest, given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. The book discusses what data science and analytics are, from the point of view of the process and results obtained. Important features of Python are also covered, including a Python primer. The basic elements of machine learning, pattern recognition, and artificial intelligence that underpin the algorithms and implementations used in the rest of the book also appear in the first part of the book. Regression analysis using Python, clustering techniques, and classification algorithms are covered in the second part of the book. Hierarchical clustering, decision trees, and ensemble techniques are also explored, along with dimensionality reduction techniques and recommendation systems. The support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author Dr. Jesús Rogel-Salazar is a Lead Data scientist with experience in the field working for companies such as AKQA, IBM Data Science Studio, Dow Jones and others. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK, He obtained his doctorate in physics at Imperial College London for work on quantum atom optics and ultra-cold matter. He has held a position as senior lecturer in mathematics as well as a consultant in the financial industry since 2006. He is the author of the book Essential Matlab and Octave, also published by CRC Press. His interests include mathematical modelling, data science, and optimization in a wide range of applications including optics, quantum mechanics, data journalism, and finance.

Machine Learning Optimization and Data Science

Machine Learning  Optimization  and Data Science Book
Author : Giuseppe Nicosia,Panos Pardalos,Giovanni Giuffrida,Renato Umeton,Vincenzo Sciacca
Publisher : Springer
Release : 2019-04-21
ISBN : 3030137090
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018.The 46 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.

Sports Analytics and Data Science

Sports Analytics and Data Science Book
Author : Thomas W. Miller
Publisher : FT Press
Release : 2015-11-18
ISBN : 0133887413
Language : En, Es, Fr & De

GET BOOK

Book Description :

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business.

Analytical Skills for AI and Data Science

Analytical Skills for AI and Data Science Book
Author : Daniel Vaughan
Publisher : Unknown
Release : 2020-05-21
ISBN : 1492060917
Language : En, Es, Fr & De

GET BOOK

Book Description :

While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies

Advances in Data Science and Classification

Advances in Data Science and Classification Book
Author : Alfredo Rizzi,Maurizio Vichi,Hans-Hermann Bock
Publisher : Springer Science & Business Media
Release : 2013-03-08
ISBN : 3642722539
Language : En, Es, Fr & De

GET BOOK

Book Description :

International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).

Digital Libraries The Era of Big Data and Data Science

Digital Libraries  The Era of Big Data and Data Science Book
Author : Michelangelo Ceci,Stefano Ferilli,Antonella Poggi
Publisher : Springer Nature
Release : 2020-01-22
ISBN : 3030399052
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes the thoroughly refereed proceedings of the 16th Italian Research Conference on Digital Libraries, IRCDL 2020, held in Bari, Italy, in January 2020. The 12 full papers and 6 short papers presented were carefully selected from 26 submissions. The papers are organized in topical sections on information retrieval, bid data and data science in DL; cultural heritage; open science.

Creativity in Intelligent Technologies and Data Science

Creativity in Intelligent Technologies and Data Science Book
Author : Alla G. Kravets,Peter P. Groumpos,Maxim Shcherbakov,Marina Kultsova
Publisher : Springer Nature
Release : 2019-08-29
ISBN : 3030297500
Language : En, Es, Fr & De

GET BOOK

Book Description :

This two-volume set constitutes the proceedings of the Third Conference on Creativity in Intellectual Technologies and Data Science, CIT&DS 2019, held in Volgograd, Russia, in September 2019. The 67 full papers, 1 short paper and 3 keynote papers presented were carefully reviewed and selected from 231 submissions. The papers are organized in topical sections in the two volumes. Part I: cyber-physical systems and Big Data-driven world. Part II: artificial intelligence and deep learning technologies for creative tasks; intelligent technologies in social engineering.

R for Political Data Science

R for Political Data Science Book
Author : Francisco Urdinez,Andres Cruz
Publisher : CRC Press
Release : 2020-11-17
ISBN : 1000204472
Language : En, Es, Fr & De

GET BOOK

Book Description :

R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.

Cross Reality and Data Science in Engineering

Cross Reality and Data Science in Engineering Book
Author : Michael E. Auer,Dominik May
Publisher : Springer Nature
Release : 2020-08-20
ISBN : 3030525759
Language : En, Es, Fr & De

GET BOOK

Book Description :

Today, online technologies are at the core of most fields of engineering and society as a whole . This book discusses the fundamentals, applications and lessons learned in the field of online and remote engineering, virtual instrumentation, and other related technologies like Cross Reality, Data Science & Big Data, Internet of Things & Industrial Internet of Things, Industry 4.0, Cyber Security, and M2M & Smart Objects. Since the first Remote Engineering and Virtual Instrumentation (REV) conference in 2004, the event has focused on the use of the Internet for engineering tasks, as well as the related opportunities and challenges. In a globally connected world, interest in online collaboration, teleworking, remote services, and other digital working environments is rapidly increasing. In this context, the REV conferences discuss fundamentals, applications and experiences in the field of Online and Remote Engineering as well as Virtual Instrumentation. Furthermore, the conferences focus on guidelines and new concepts for engineering education in higher and vocational education institutions, including emerging technologies in learning, MOOCs & MOOLs, and open resources. This book presents the proceedings of REV2020 on “Cross Reality and Data Science in Engineering” which was held as the 17th in series of annual events. It was organized in cooperation with the Engineering Education Transformations Institute and the Georgia Informatics Institutes for Research and Education and was held at the College of Engineering at the University of Georgia in Athens (GA), USA, from February 26 to 28, 2020.

The Real Work of Data Science

The Real Work of Data Science Book
Author : Ron S. Kenett,Thomas C. Redman
Publisher : John Wiley & Sons
Release : 2019-04-01
ISBN : 111957076X
Language : En, Es, Fr & De

GET BOOK

Book Description :

The essential guide for data scientists and for leaders who must get more from their data science teams The Economist boldly claims that data are now "the world's most valuable resource." But, as Kenett and Redman so richly describe, unlocking that value requires far more than technical excellence. The Real Work of Data Science explores understanding the problems, dealing with quality issues, building trust with decision makers, putting data science teams in the right organizational spots, and helping companies become data-driven. This is the work that spells the difference between a good data scientist and a great one, between a team that makes marginal contributions and one that drives the business, between a company that gains some value from its data and one in which data truly is "the most valuable resource." "These two authors are world-class experts on analytics, data management, and data quality; they've forgotten more about these topics than most of us will ever know. Their book is pragmatic, understandable, and focused on what really counts. If you want to do data science in any capacity, you need to read it." —Thomas H. Davenport, Distinguished Professor, Babson College and Fellow, MIT Initiative on the Digital Economy "I like your book. The chapters address problems that have faced statisticians for generations, updated to reflect today's issues, such as computational Big Data." —Sir David Cox, Warden of Nuffield College and Professor of Statistics, Oxford University "Data science is critical for competitiveness, for good government, for correct decisions. But what is data science? Kenett and Redman give, by far, the best introduction to the subject I have seen anywhere. They address the critical questions of formulating the right problem, collecting the right data, doing the right analyses, making the right decisions, and measuring the actual impact of the decisions. This book should become required reading in statistics and computer science departments, business schools, analytics institutes and, most importantly, by all business managers." —A. Blanton Godfrey, Joseph D. Moore Distinguished University Professor, Wilson College of Textiles, North Carolina State University

Data Science for Beginners

Data Science for Beginners Book
Author : Andrew Park
Publisher : Unknown
Release : 2021-02-09
ISBN : 9781914167997
Language : En, Es, Fr & De

GET BOOK

Book Description :

★ 55% OFF for Bookstores! Now at $49.95 instead of $59.95! ★ Your Customers Will Never Stop To Use This Complete Guide! Did you know that according to Harvard Business Review the Data Scientist is the sexiest job of the 21st century? And for a reason! If "sexy" means having rare qualities that are much in demand, data scientists are already there. They are expensive to hire and, given the very competitive market for their services, difficult to retain. There simply aren't a lot of people with their combination of scientific background and computational and analytical skills. Data Science is all about transforming data into business value using math and algorithms. And needless to say, Python is the must-know programming language of the 21st century. If you are interested in coding and Data Science, then you must know Python to succeed in these industries! Data Science for Beginners is the perfect place to start learning everything you need to succeed. Contained within these four essential books are the methods, concepts, and important practical examples to help build your foundation for excelling at the discipline that is shaping the modern word. This bundle is perfect for programmers, software engineers, project managers and those who just want to keep up with technology. With these books in your hands, you will: ● Learn Python from scratch including the basic operations, how to install it, data structures and functions, and conditional loops ● Build upon the fundamentals with advanced techniques like Object-Oriented Programming (OOP), Inheritance, and Polymorphism ● Discover the importance of Data Science and how to use it in real-world situations ● Learn the 5 steps of Data Analysis so you can comprehend and analyze data sitting right in front of you ● Increase your income by learning a new, valuable skill that only a select handful of people take the time to learn ● Discover how companies can improve their business through practical examples and explanations ● And Much More! This bundle is essential for anyone who wants to study Data Science and learn how the world is moving to an open-source platform. Whether you are a software engineer or a project manager, jump to the next level by developing a data-driven approach and learning how to define a data-driven vision of your business! Order Your Copy of the Bundle and Let Your Customers Start Their New Career Path Today!