Skip to main content

Data Science For Business

In Order to Read Online or Download Data Science For Business Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Data Science for Business

Data Science for Business Book
Author : Foster Provost,Tom Fawcett
Publisher : "O'Reilly Media, Inc."
Release : 2013-07-27
ISBN : 1449374298
Language : En, Es, Fr & De

GET BOOK

Book Description :

Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. By learning data science principles, you will understand the many data-mining techniques in use today. More importantly, these principles underpin the processes and strategies necessary to solve business problems through data mining techniques.

Data Science for Business Professionals

Data Science for Business Professionals Book
Author : Probyto Data Science and Consulting Pvt. Ltd.
Publisher : BPB Publications
Release : 2020-05-06
ISBN : 9389423287
Language : En, Es, Fr & De

GET BOOK

Book Description :

Primer into the multidisciplinary world of Data Science KEY FEATURES - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTION The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset. WHAT WILL YOU LEARN - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FOR This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science. TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business Intelligence 16. Data Visualization Tools 17. Industry Use Case 1 – FormAssist 18. Industry Use Case 2 – PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments

Data Science for Business With R

Data Science for Business With R Book
Author : Jeffrey S. Saltz,Jeffrey M. Stanton
Publisher : SAGE Publications
Release : 2021-02-14
ISBN : 1544370466
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Science for Business with R, written by Jeffrey S. Saltz and Jeffrey M. Stanton, focuses on the concepts foundational for students starting a business analytics or data science degree program. To keep the book practical and applied, the authors feature a running case using a global airline business’s customer survey dataset to illustrate how to turn data in business decisions, in addition to numerous examples throughout. To aid in usability beyond the classroom, the text features full integration of freely-available R and RStudio software, one of the most popular data science tools available. Designed for students with little to no experience in related areas like computer science, the book chapters follow a logical order from introduction and installation of R and RStudio, working with data architecture, undertaking data collection, performing data analysis, and transitioning to data archiving and presentation. Each chapter follows a familiar structure, starting with learning objectives and background, following the basic steps of functions alongside simple examples, applying these functions to the case study, and ending with chapter challenge questions, sources, and a list of R functions so students know what to expect in each step of their data science course. Data Science for Business with R provides readers with a straightforward and applied guide to this new and evolving field.

Data Science for Business and Decision Making

Data Science for Business and Decision Making Book
Author : Luiz Paulo Fávero,Patrícia Belfiore
Publisher : Academic Press
Release : 2019-04-11
ISBN : 0128112174
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. Combines statistics and operations research modeling to teach the principles of business analytics Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

Data Science For Dummies

Data Science For Dummies Book
Author : Lillian Pierson
Publisher : John Wiley & Sons
Release : 2015-02-20
ISBN : 1118841522
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discover how data science can help you gain in-depth insight into your business – the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer covering all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad aspects of the topic, including the sometimes intimidating field of big data and data science, it is not an instructional manual for hands-on implementation. Here’s what to expect in Data Science for Dummies: Provides a background in big data and data engineering before moving on to data science and how it’s applied to generate value. Includes coverage of big data frameworks and applications like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL. Explains machine learning and many of its algorithms, as well as artificial intelligence and the evolution of the Internet of Things. Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate. It’s a big, big data world out there – let Data Science For Dummies help you get started harnessing its power so you can gain a competitive edge for your organization.

Data Science for Beginners

Data Science for Beginners Book
Author : Anthony S. Williams
Publisher : Anthony S. Williams
Release : 2020-02-12
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Cognitive Behavior- 4 BOOK BUNDLE!! Cognitive Dissonance Theory And Our Hidden Biases With this book, you get to: Understand the link between motivational and dissonance processes Understand the link between cognitive dissonance and doing well in life Understand how to enhance both your emotional intelligence and ability to manage people and situations Understand why understanding cognitive leads to stellar success in life Mental Models For Critical And Strategic Thinking With this book, you get to Understand the concept of using mental models to think critically and strategically Understand what it takes to leverage better reasoning concepts to achieve all-round success Understand how to use deep learning to help you achieve your life goals Understand how using mental models puts tremendous analytical ability at your disposal that lets you make optimal use of all the information that engulfs you in the digital age Critical Thinking And Not Deceptive Thinking Is The Way With this book, you get to: Understand the concept of critical thinking in a strategic manner Understand what it takes to overcome cognitive biases and logical fallacies Understand how to use critical thinking to help you achieve your life goals Understand how deceptive thinking can be replaced by critical thinking Cognitive Biases And The Blind Spots Of Critical Thinking With this book, you get to: Understand what cognitive biases and blind spots of critical thinking are Understand the impact of critical thinking on decision-making Understand what Critical thinking is and how it can stop you from following irrational mental models of thinking Learn to be great at critical thinking and optimal decision making Get this book bundle NOW and SAVE money!

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Book
Author : Chkoniya, Valentina
Publisher : IGI Global
Release : 2021-06-25
ISBN : 1799869865
Language : En, Es, Fr & De

GET BOOK

Book Description :

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.

Foundations of Data Science for Engineering Problem Solving

Foundations of Data Science for Engineering Problem Solving Book
Author : Parikshit Narendra Mahalle
Publisher : Springer Nature
Release : 2022-05-21
ISBN : 9811651604
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is one-stop shop which offers essential information one must know and can implement in real-time business expansions to solve engineering problems in various disciplines. It will also help us to make future predictions and decisions using AI algorithms for engineering problems. Machine learning and optimizing techniques provide strong insights into novice users. In the era of big data, there is a need to deal with data science problems in multidisciplinary perspective. In the real world, data comes from various use cases, and there is a need of source specific data science models. Information is drawn from various platforms, channels, and sectors including web-based media, online business locales, medical services studies, and Internet. To understand the trends in the market, data science can take us through various scenarios. It takes help of artificial intelligence and machine learning techniques to design and optimize the algorithms. Big data modelling and visualization techniques of collected data play a vital role in the field of data science. This book targets the researchers from areas of artificial intelligence, machine learning, data science and big data analytics to look for new techniques in business analytics and applications of artificial intelligence in recent businesses.

Applied Data Science in Tourism

Applied Data Science in Tourism Book
Author : Roman Egger
Publisher : Springer Nature
Release : 2022
ISBN : 3030883892
Language : En, Es, Fr & De

GET BOOK

Book Description :

Access to large data sets has led to a paradigm shift in the tourism research landscape. Big data is enabling a new form of knowledge gain, while at the same time shaking the epistemological foundations and requiring new methods and analysis approaches. It allows for interdisciplinary cooperation between computer sciences and social and economic sciences, and complements the traditional research approaches. This book provides a broad basis for the practical application of data science approaches such as machine learning, text mining, social network analysis, and many more, which are essential for interdisciplinary tourism research. Each method is presented in principle, viewed analytically, and its advantages and disadvantages are weighed up and typical fields of application are presented. The correct methodical application is presented with a "how-to" approach, together with code examples, allowing a wider reader base including researchers, practitioners, and students entering the field. The book is a very well-structured introduction to data science not only in tourism and its methodological foundations, accompanied by well-chosen practical cases. It underlines an important insight: data are only representations of reality, you need methodological skills and domain background to derive knowledge from them. - Hannes Werthner, Vienna University of Technology. Roman Egger has accomplished a difficult but necessary task: make clear how data science can practically support and foster travel and tourism research and applications. The book offers a well-taught collection of chapters giving a comprehensive and deep account of AI and data science for tourism. - Francesco Ricci, Free University of Bozen-Bolzano. This well-structured and easy-to-read book provides a comprehensive overview of data science in tourism. It contributes largely to the methodological repository beyond traditional methods. - Rob Law, University of Macau.

Data Science for Public Policy

Data Science for Public Policy Book
Author : Jeffrey C. Chen,Edward A. Rubin,Gary J. Cornwall
Publisher : Springer Nature
Release : 2021
ISBN : 3030713520
Language : En, Es, Fr & De

GET BOOK

Book Description :

This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analysts time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.

Data Science for Economics and Finance

Data Science for Economics and Finance Book
Author : Sergio Consoli,Diego Reforgiato Recupero,Michaela Saisana
Publisher : Springer Nature
Release : 2021
ISBN : 3030668916
Language : En, Es, Fr & De

GET BOOK

Book Description :

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Data Science for Marketing Analytics

Data Science for Marketing Analytics Book
Author : Mirza Rahim Baig,Gururajan Govindan,Vishwesh Ravi Shrimali
Publisher : Packt Publishing Ltd
Release : 2021-09-07
ISBN : 1800563884
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book on marketing analytics with Python will quickly get you up and running using practical data science and machine learning to improve your approach to marketing. You'll learn how to analyze sales, understand customer data, predict outcomes, and present conclusions with clear visualizations.

Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform Book
Author : Valliappa Lakshmanan
Publisher : "O'Reilly Media, Inc."
Release : 2022-03-29
ISBN : 1098118928
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build using Google Cloud Platform (GCP). This hands-on guide shows data engineers and data scientists how to implement an end-to-end data pipeline with cloud native tools on GCP. Throughout this updated second edition, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by building a data pipeline in your own project on GCP, and discover how to solve data science problems in a transformative and more collaborative way. You'll learn how to: Employ best practices in building highly scalable data and ML pipelines on Google Cloud Automate and schedule data ingest using Cloud Run Create and populate a dashboard in Data Studio Build a real-time analytics pipeline using Pub/Sub, Dataflow, and BigQuery Conduct interactive data exploration with BigQuery Create a Bayesian model with Spark on Cloud Dataproc Forecast time series and do anomaly detection with BigQuery ML Aggregate within time windows with Dataflow Train explainable machine learning models with Vertex AI Operationalize ML with Vertex AI Pipelines

Artificial Intelligence for Data Science in Theory and Practice

Artificial Intelligence for Data Science in Theory and Practice Book
Author : Mohamed Alloghani
Publisher : Springer Nature
Release : 2022-05-21
ISBN : 3030922456
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Artificial Intelligence for Data Science in Theory and Practice book written by Mohamed Alloghani, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Data Science for Undergraduates

Data Science for Undergraduates Book
Author : National Academies of Sciences, Engineering, and Medicine,Division of Behavioral and Social Sciences and Education,Board on Science Education,Division on Engineering and Physical Sciences,Committee on Applied and Theoretical Statistics,Board on Mathematical Sciences and Analytics,Computer Science and Telecommunications Board,Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective
Publisher : National Academies Press
Release : 2018-10-11
ISBN : 0309475627
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.

Practical Data Science for Information Professionals

Practical Data Science for Information Professionals Book
Author : David Stuart
Publisher : Facet Publishing
Release : 2020-07-24
ISBN : 1783303441
Language : En, Es, Fr & De

GET BOOK

Book Description :

Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within.

Data Science For Dummies

Data Science For Dummies Book
Author : Lillian Pierson
Publisher : John Wiley & Sons
Release : 2017-03-06
ISBN : 1119327636
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Data Science for Business and Decision Making

Data Science for Business and Decision Making Book
Author : Luiz Paulo Fávero,Patrícia Belfiore
Publisher : Academic Press
Release : 2019-03-08
ISBN : 9780128112168
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. Combines statistics and operations research modeling to teach the principles of business analytics Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

Data Science for Librarians

Data Science for Librarians Book
Author : Yunfei Du,Hammad Rauf Khan
Publisher : ABC-CLIO
Release : 2020-03-26
ISBN : 1440871221
Language : En, Es, Fr & De

GET BOOK

Book Description :

This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries. Data Science for Librarians introduces data science to students and practitioners in library services. Writing for academic, public, and school library managers; library science students; and library and information science educators, authors Yunfei Du and Hammad Rauf Khan provide a thorough overview of conceptual and practical tools for data librarian practice. Partially due to how quickly data science evolves, libraries have yet to recognize core competencies and skills required to perform the job duties of a data librarian. As society transitions from the information age into the era of big data, librarians and information professionals require new knowledge and skills to stay current and take on new job roles, such as data librarianship. Skills such as data curation, research data management, statistical analysis, business analytics, visualization, smart city data, and learning analytics are relevant in library services today and will become increasingly so in the near future. This text serves as a tool for library and information science students and educators working on data science curriculum design. Reviews fundamental concepts and principles of data science Offers a practical overview of tools and software Highlights skills and services needed in the 21st-century academic library Covers the entire research data life cycle and the librarian's role at each stage Provides insight into how library science and data science intersect

Data Science in R

Data Science in R Book
Author : Deborah Nolan,Duncan Temple Lang
Publisher : CRC Press
Release : 2015-04-21
ISBN : 1498759874
Language : En, Es, Fr & De

GET BOOK

Book Description :

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts