Skip to main content

Data Mining And Predictive Analysis

In Order to Read Online or Download Data Mining And Predictive Analysis Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Predictive Analytics and Data Mining

Predictive Analytics and Data Mining Book
Author : Vijay Kotu,Bala Deshpande
Publisher : Morgan Kaufmann
Release : 2014-11-27
ISBN : 0128016507
Language : En, Es, Fr & De

GET BOOK

Book Description :

Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Data Mining and Predictive Analytics

Data Mining and Predictive Analytics Book
Author : Daniel T. Larose,Chantal D. Larose
Publisher : John Wiley & Sons
Release : 2015-03-16
ISBN : 1118116194
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn methods of data analysis and their application to real-world data sets. Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content

Data Mining and Predictive Analysis

Data Mining and Predictive Analysis Book
Author : Colleen McCue
Publisher : Butterworth-Heinemann
Release : 2015-01-02
ISBN : 9780128002292
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, 2nd Edition, describes clearly and simply how crime clusters and other intelligence can be used to deploy security resources most effectively. Rather than being reactive, security agencies can anticipate and prevent crime through the appropriate application of data mining and the use of standard computer programs. Data Mining and Predictive Analysis offers a clear, practical starting point for professionals who need to use data mining in homeland security, security analysis, and operational law enforcement settings. This revised text highlights new and emerging technology, discusses the importance of analytic context for ensuring successful implementation of advanced analytics in the operational setting, and covers new analytic service delivery models that increase ease of use and access to high-end technology and analytic capabilities. The use of predictive analytics in intelligence and security analysis enables the development of meaningful, information based tactics, strategy, and policy decisions in the operational public safety and security environment. Discusses new and emerging technologies and techniques, including up-to-date information on predictive policing, a key capability in law enforcement and security Demonstrates the importance of analytic context beyond software Covers new models for effective delivery of advanced analytics to the operational environment, which have increased access to even the most powerful capabilities Includes terminology, concepts, practical application of these concepts, and examples to highlight specific techniques and approaches in crime and intelligence analysis

Predictive Analytics Data Mining and Big Data

Predictive Analytics  Data Mining and Big Data Book
Author : S. Finlay
Publisher : Springer
Release : 2014-07-01
ISBN : 1137379286
Language : En, Es, Fr & De

GET BOOK

Book Description :

This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Applied Predictive Analytics

Applied Predictive Analytics Book
Author : Dean Abbott
Publisher : John Wiley & Sons
Release : 2014-03-31
ISBN : 111872769X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.

Commercial Data Mining

Commercial Data Mining Book
Author : David Nettleton
Publisher : Morgan Kaufmann
Release : 2014
ISBN : 9780124166028
Language : En, Es, Fr & De

GET BOOK

Book Description :

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience

Descriptive Data Mining

Descriptive Data Mining Book
Author : David L. Olson,Georg Lauhoff
Publisher : Springer
Release : 2019-05-06
ISBN : 9811371814
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an overview of data mining methods demonstrated by software. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Diagnostic analytics can apply analysis to sensor input to direct control systems automatically. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on descriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic software support to data visualization. Chapter 3 covers fundamentals of market basket analysis, and Chapter 4 provides demonstration of RFM modeling, a basic marketing data mining tool. Chapter 5 demonstrates association rule mining. Chapter 6 is a more in-depth coverage of cluster analysis. Chapter 7 discusses link analysis. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Predictive Data Mining Models

Predictive Data Mining Models Book
Author : David L. Olson,Desheng Wu
Publisher : Springer
Release : 2019-08-07
ISBN : 9811396647
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R’) and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on prescriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Predictive Analytics for Marketers

Predictive Analytics for Marketers Book
Author : Barry Leventhal
Publisher : Kogan Page Publishers
Release : 2018-02-03
ISBN : 0749479949
Language : En, Es, Fr & De

GET BOOK

Book Description :

Predictive analytics has revolutionized marketing practice. It involves using many techniques from data mining, statistics, modelling, machine learning and artificial intelligence, to analyse current data and make predictions about unknown future events. In business terms, this enables companies to forecast consumer behaviour and much more. Predictive Analytics for Marketers will guide marketing professionals on how to apply predictive analytical tools to streamline business practices. Including comprehensive coverage of an array of predictive analytic tools and techniques, this book enables readers to harness patterns from past data, to make accurate and useful predictions that can be converted to business success. Truly global in its approach, the insights these techniques offer can be used to manage resources more effectively across all industries and sectors. Written in clear, non-technical language, Predictive Analytics for Marketers contains case studies from the author's more than 25 years of experience and articles from guest contributors, demonstrating how predictive analytics has been used to successfully achieve a range of business purposes.

Predictive Analytics

Predictive Analytics Book
Author : Richard Hurley
Publisher : Unknown
Release : 2020-01-19
ISBN : 9781952191008
Language : En, Es, Fr & De

GET BOOK

Book Description :

This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future.

Statistical and Machine Learning Data Mining

Statistical and Machine Learning Data Mining  Book
Author : Bruce Ratner
Publisher : CRC Press
Release : 2017-07-12
ISBN : 1351652389
Language : En, Es, Fr & De

GET BOOK

Book Description :

Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Predictive Analytics For Dummies

Predictive Analytics For Dummies Book
Author : Dr. Anasse Bari,Dr. Mohamed Chaouchi,Dr. Tommy Jung
Publisher : John Wiley & Sons
Release : 2016-09-16
ISBN : 1119267013
Language : En, Es, Fr & De

GET BOOK

Book Description :

Use Big Data and technology to uncover real-world insights You don't need a time machine to predict the future. All it takes is a little knowledge and know-how, and Predictive Analytics For Dummies gets you there fast. With the help of this friendly guide, you'll discover the core of predictive analytics and get started putting it to use with readily available tools to collect and analyze data. In no time, you'll learn how to incorporate algorithms through data models, identify similarities and relationships in your data, and predict the future through data classification. Along the way, you'll develop a roadmap by preparing your data, creating goals, processing your data, and building a predictive model that will get you stakeholder buy-in. Big Data has taken the marketplace by storm, and companies are seeking qualified talent to quickly fill positions to analyze the massive amount of data that are being collected each day. If you want to get in on the action and either learn or deepen your understanding of how to use predictive analytics to find real relationships between what you know and what you want to know, everything you need is a page away! Offers common use cases to help you get started Covers details on modeling, k-means clustering, and more Includes information on structuring your data Provides tips on outlining business goals and approaches The future starts today with the help of Predictive Analytics For Dummies.

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Peter Gedeck,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2019-11-05
ISBN : 1119549841
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Predictive Analytics

Predictive Analytics Book
Author : Dursun Delen
Publisher : FT Press Analytics
Release : 2020-10-30
ISBN : 9780136738510
Language : En, Es, Fr & De

GET BOOK

Book Description :

In Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for students. Using predictive analytics techniques, students can uncover hidden patterns and correlations in their data, and leverage this insight to improve a wide range of business decisions. Delen's holistic approach covers all this, and more: Data mining processes, methods, and techniques The role and management of data Predictive analytics tools and metrics Techniques for text and web mining, and for sentiment analysis Integration with cutting-edge Big Data approaches Throughout, Delen promotes understanding by presenting numerous conceptual illustrations, motivational success stories, failed projects that teach important lessons, and simple, hands-on tutorials that set this guide apart from competitors.

Data Mining and Predictive Analytics

Data Mining and Predictive Analytics Book
Author : Daniel T. Larose
Publisher : Unknown
Release : 2015
ISBN : 9788126559138
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified "white box" approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review.

Data Preparation for Data Mining

Data Preparation for Data Mining Book
Author : Dorian Pyle
Publisher : Morgan Kaufmann
Release : 1999-04-05
ISBN : 9781558605299
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Preparation for Data Mining addresses an issue unfortunately ignored by most authorities on data mining: data preparation. Thanks largely to its perceived difficulty, data preparation has traditionally taken a backseat to the more alluring question of how best to extract meaningful knowledge. But without adequate preparation of your data, the return on the resources invested in mining is certain to be disappointing. Dorian Pyle corrects this imbalance. A twenty-five-year veteran of what has become the data mining industry, Pyle shares his own successful data preparation methodology, offering both a conceptual overview for managers and complete technical details for IT professionals. Apply his techniques and watch your mining efforts pay off-in the form of improved performance, reduced distortion, and more valuable results. On the enclosed CD-ROM, you'll find a suite of programs as C source code and compiled into a command-line-driven toolkit. This code illustrates how the author's techniques can be applied to arrive at an automated preparation solution that works for you. Also included are demonstration versions of three commercial products that help with data preparation, along with sample data with which you can practice and experiment. * Offers in-depth coverage of an essential but largely ignored subject. * Goes far beyond theory, leading you-step by step-through the author's own data preparation techniques. * Provides practical illustrations of the author's methodology using realistic sample data sets. * Includes algorithms you can apply directly to your own project, along with instructions for understanding when automation is possible and when greater intervention is required. * Explains how to identify and correct data problems that may be present in your application. * Prepares miners, helping them head into preparation with a better understanding of data sets and their limitations.

RapidMiner

RapidMiner Book
Author : Markus Hofmann,Ralf Klinkenberg
Publisher : CRC Press
Release : 2016-04-19
ISBN : 1482205505
Language : En, Es, Fr & De

GET BOOK

Book Description :

Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

Data Mining and Predictive Analysis

Data Mining and Predictive Analysis Book
Author : Colleen McCue
Publisher : Elsevier
Release : 2006-10-17
ISBN : 9780080464626
Language : En, Es, Fr & De

GET BOOK

Book Description :

It is now possible to predict the future when it comes to crime. In Data Mining and Predictive Analysis, Dr. Colleen McCue describes not only the possibilities for data mining to assist law enforcement professionals, but also provides real-world examples showing how data mining has identified crime trends, anticipated community hot-spots, and refined resource deployment decisions. In this book Dr. McCue describes her use of "off the shelf" software to graphically depict crime trends and to predict where future crimes are likely to occur. Armed with this data, law enforcement executives can develop "risk-based deployment strategies," that allow them to make informed and cost-efficient staffing decisions based on the likelihood of specific criminal activity. Knowledge of advanced statistics is not a prerequisite for using Data Mining and Predictive Analysis. The book is a starting point for those thinking about using data mining in a law enforcement setting. It provides terminology, concepts, practical application of these concepts, and examples to highlight specific techniques and approaches in crime and intelligence analysis, which law enforcement and intelligence professionals can tailor to their own unique situation and responsibilities. * Serves as a valuable reference tool for both the student and the law enforcement professional * Contains practical information used in real-life law enforcement situations * Approach is very user-friendly, conveying sophisticated analyses in practical terms

Practical Text Mining and Statistical Analysis for Non structured Text Data Applications

Practical Text Mining and Statistical Analysis for Non structured Text Data Applications Book
Author : Gary Miner,John Elder IV,Andrew Fast,Thomas Hill,Robert Nisbet,Dursun Delen
Publisher : Academic Press
Release : 2012-01-25
ISBN : 0123870119
Language : En, Es, Fr & De

GET BOOK

Book Description :

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com Glossary of text mining terms provided in the appendix

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications Book
Author : Robert Nisbet,Gary Miner,Ken Yale
Publisher : Elsevier
Release : 2017-11-09
ISBN : 0124166458
Language : En, Es, Fr & De

GET BOOK

Book Description :

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications