Skip to main content

Data Insights

Download Data Insights Full eBooks in PDF, EPUB, and kindle. Data Insights is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device.

Data Insights

Data Insights Book
Author : Hunter Whitney
Publisher : Newnes
Release : 2012-11-27
ISBN : 0123877946
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data Insights: New Ways to Visualize and Make Sense of Data offers thought-provoking insights into how visualization can foster a clearer and more comprehensive understanding of data. The book offers perspectives from people with different backgrounds, including data scientists, statisticians, painters, and writers. It argues that all data is useless, or misleading, if we do not know what it means. Organized into seven chapters, the book explores some of the ways that data visualization and other emerging approaches can make data meaningful and therefore useful. It also discusses some fundamental ideas and basic questions in the data lifecycle; the process of interactions between people, data, and displays that lead to better questions and more useful answers; and the fundamentals, origins, and purposes of the basic building blocks that are used in data visualization. The reader is introduced to tried and true approaches to understanding users in the context of user interface design, how communications can get distorted, and how data visualization is related to thinking machines. Finally, the book looks at the future of data visualization by assessing its strengths and weaknesses. Case studies from business analytics, healthcare, network monitoring, security, and games, among others, as well as illustrations, thought-provoking quotes, and real-world examples are included. This book will prove useful to computer professionals, technical marketing professionals, content strategists, Web and product designers, and researchers. Demonstrates, with a variety of case studies, how visualizations can foster a clearer and more comprehensive understanding of data Answers the question, "How can data visualization help me?" with discussions of how it fits into a wide array of purposes and situations Makes the case that data visualization is not just about technology; it also involves a deeply human process

Data Analytics in Digital Humanities

Data Analytics in Digital Humanities Book
Author : Shalin Hai-Jew
Publisher : Springer
Release : 2017-05-03
ISBN : 3319544993
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book covers computationally innovative methods and technologies including data collection and elicitation, data processing, data analysis, data visualizations, and data presentation. It explores how digital humanists have harnessed the hypersociality and social technologies, benefited from the open-source sharing not only of data but of code, and made technological capabilities a critical part of humanities work. Chapters are written by researchers from around the world, bringing perspectives from diverse fields and subject areas. The respective authors describe their work, their research, and their learning. Topics include semantic web for cultural heritage valorization, machine learning for parody detection by classification, psychological text analysis, crowdsourcing imagery coding in natural disasters, and creating inheritable digital codebooks.Designed for researchers and academics, this book is suitable for those interested in methodologies and analytics that can be applied in literature, history, philosophy, linguistics, and related disciplines. Professionals such as librarians, archivists, and historians will also find the content informative and instructive.

Creating Value with Big Data Analytics

Creating Value with Big Data Analytics Book
Author : Peter C. Verhoef,Edwin Kooge,Natasha Walk
Publisher : Routledge
Release : 2016-01-08
ISBN : 1317561929
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Our newly digital world is generating an almost unimaginable amount of data about all of us. Such a vast amount of data is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organisations to leverage the information to create value. This book is a refreshingly practical, yet theoretically sound roadmap to leveraging big data and analytics. Creating Value with Big Data Analytics provides a nuanced view of big data development, arguing that big data in itself is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. By tying data and analytics to specific goals and processes for implementation, this is a much-needed book that will be essential reading for students and specialists of data analytics, marketing research, and customer relationship management.

Big Data and Business Analytics

Big Data and Business Analytics Book
Author : Jay Liebowitz
Publisher : CRC Press
Release : 2013-06-13
ISBN : 1482218518
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions to ‘do this, avoid that.’" —From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee Company With the growing barrage of "big data," it becomes vitally important for organizations to make sense of this data and information in a timely and effective way. That’s where analytics come into play. Research shows that organizations that use business analytics to guide their decision making are more productive and experience higher returns on equity. Big Data and Business Analytics helps you quickly grasp the trends and techniques of big data and business analytics to make your organization more competitive. Packed with case studies, this book assembles insights from some of the leading experts and organizations worldwide. Spanning industry, government, not-for-profit organizations, and academia, they share valuable perspectives on big data domains such as cybersecurity, marketing, emergency management, healthcare, finance, and transportation. Understand the trends, potential, and challenges associated with big data and business analytics Get an overview of machine learning, advanced statistical techniques, and other predictive analytics that can help you solve big data issues Learn from VPs of Big Data/Insights & Analytics via case studies of Fortune 100 companies, government agencies, universities, and not-for-profits Big data problems are complex. This book shows you how to go from being data-rich to insight-rich, improving your decision making and creating competitive advantage. Author Jay Liebowitz recently had an article published in The World Financial Review. www.worldfinancialreview.com/?p=1904

Data Analytics and AI

Data Analytics and AI Book
Author : Jay Liebowitz
Publisher : CRC Press
Release : 2020-08-06
ISBN : 1000094650
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.

Data Science and Analytics with Python

Data Science and Analytics with Python Book
Author : Jesus Rogel-Salazar
Publisher : CRC Press
Release : 2018-02-05
ISBN : 1498742114
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as SciKit-learn, Pandas, Numpy, and others. The use of Python is of particular interest, given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. The book discusses what data science and analytics are, from the point of view of the process and results obtained. Important features of Python are also covered, including a Python primer. The basic elements of machine learning, pattern recognition, and artificial intelligence that underpin the algorithms and implementations used in the rest of the book also appear in the first part of the book. Regression analysis using Python, clustering techniques, and classification algorithms are covered in the second part of the book. Hierarchical clustering, decision trees, and ensemble techniques are also explored, along with dimensionality reduction techniques and recommendation systems. The support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author Dr. Jesús Rogel-Salazar is a Lead Data scientist with experience in the field working for companies such as AKQA, IBM Data Science Studio, Dow Jones and others. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK, He obtained his doctorate in physics at Imperial College London for work on quantum atom optics and ultra-cold matter. He has held a position as senior lecturer in mathematics as well as a consultant in the financial industry since 2006. He is the author of the book Essential Matlab and Octave, also published by CRC Press. His interests include mathematical modelling, data science, and optimization in a wide range of applications including optics, quantum mechanics, data journalism, and finance.

PR Technology Data and Insights

PR Technology  Data and Insights Book
Author : Mark Weiner
Publisher : Kogan Page Publishers
Release : 2021-04-03
ISBN : 1398600415
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data, technology and insights have forever changed the public relations and corporate communications function. Failure to adapt is more a matter of willingness than inability. Now, technology, data and insights inform more meaningful objectives and elevate performance evaluation. The result is a positive return on PR investment, reduced reputational risk and optimal efficiency. By ignoring these essential assets, PR professionals risk losing executive attention and organizational investment. While "building buzz" or "breaking through the media clutter" may have been adequate measures of success in the past, the top executives who fund and evaluate corporate communications expect much more, including a quantifiable and positive return on PR investment. Leaders assume that corporate communications and PR professionals already understand the fundamentals of business, and they expect an ability to contextualize PR objectives, outputs and outcomes in the language of business. PR Technology, Data and Insights helps communications professionals understand the purpose-built technologies, data assets and actionable insights available to them while sharing best practices to apply these assets for improved PR performance over time, versus objectives and against competitors. Using case studies from industries as varied as financial services, technology, travel, automotive and more, along with best practice examples from Adobe, Mastercard, Southwest, Ford and other world class organizations, PR Technology, Data and Insights shows professional communicators how to optimize technology, lead with data, quantify PR's ability to convert public relations outputs to business outcomes, and deliver insights that empower executive decision-making.

Insights from Data with R

Insights from Data with R Book
Author : Owen L. Petchey,Andrew P. Beckerman,Natalie Cooper,Dylan Z. Childs
Publisher : Oxford University Press
Release : 2021-02-24
ISBN : 0192589733
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.

Data Smart

Data Smart Book
Author : John W. Foreman
Publisher : John Wiley & Sons
Release : 2013-10-31
ISBN : 1118839862
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.

Large Scale Data Analytics

Large Scale Data Analytics Book
Author : Aris Gkoulalas-Divanis,Abderrahim Labbi
Publisher : Springer Science & Business Media
Release : 2014-01-08
ISBN : 1461492424
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputing, hardware architecture, data visualization, statistics, and privacy. There is increasing need for new approaches and technologies that can analyze and synthesize very large amounts of data, in the order of petabytes, that are generated by massively distributed data sources. This requires new distributed architectures for data analysis. Additionally, the heterogeneity of such sources imposes significant challenges for the efficient analysis of the data under numerous constraints, including consistent data integration, data homogenization and scaling, privacy and security preservation. The authors also broaden reader understanding of emerging real-world applications in domains such as customer behavior modeling, graph mining, telecommunications, cyber-security, and social network analysis, all of which impose extra requirements for large-scale data analysis. Large-Scale Data Analytics is organized in 8 chapters, each providing a survey of an important direction of large-scale data analytics or individual results of the emerging research in the field. The book presents key recent research that will help shape the future of large-scale data analytics, leading the way to the design of new approaches and technologies that can analyze and synthesize very large amounts of heterogeneous data. Students, researchers, professionals and practitioners will find this book an authoritative and comprehensive resource.

Big Data Is Not a Monolith

Big Data Is Not a Monolith Book
Author : Cassidy R. Sugimoto,Hamid R. Ekbia,Michael Mattioli
Publisher : MIT Press
Release : 2016-10-21
ISBN : 0262335751
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Perspectives on the varied challenges posed by big data for health, science, law, commerce, and politics. Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies. The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control through monitoring, mining, and manipulation; big data and society, examining both its empowering and its constraining effects; big data and science, considering issues of data governance, provenance, reuse, and trust; and big data and organizations, discussing data responsibility, “data harm,” and decision making. Contributors Ryan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West

Thinking with Data

Thinking with Data Book
Author : Max Shron
Publisher : "O'Reilly Media, Inc."
Release : 2014-01-20
ISBN : 1491949775
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Many analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills. Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. Learn a framework for scoping data projects Understand how to pin down the details of an idea, receive feedback, and begin prototyping Use the tools of arguments to ask good questions, build projects in stages, and communicate results Explore data-specific patterns of reasoning and learn how to build more useful arguments Delve into causal reasoning and learn how it permeates data work Put everything together, using extended examples to see the method of full problem thinking in action

Outside Insight

Outside Insight Book
Author : Jorn Lyseggen
Publisher : Penguin UK
Release : 2017-10-12
ISBN : 0241281644
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Is your business looking out? The world today is drowning in data. There is a treasure trove of valuable and underutilized insights that can be gleaned from information companies and people leave behind on the internet - our 'digital breadcrumbs' - from job postings, to online news, social media, online ad spend, patent applications and more. As a result, we're at the cusp of a major shift in the way businesses are managed and governed - moving from a focus solely on lagging, internal data, toward analyses that also encompass industry-wide, external data to paint a more complete picture of a brand's opportunities and threats and uncover forward-looking insights, in real time. Tomorrow's most successful brands are already embracing Outside Insight, benefitting from an information advantage while their competition is left behind. Drawing on practical examples of transformative, data-led decisions made by brands like Apple, Facebook, Barack Obama and many more, in Outside Insight, Meltwater CEO Jorn Lyseggen illustrates the future of corporate decision-making and offers a detailed plan for business leaders to implement Outside Insight thinking into their company mindset and processes.

Managing and Processing Big Data in Cloud Computing

Managing and Processing Big Data in Cloud Computing Book
Author : Kannan, Rajkumar
Publisher : IGI Global
Release : 2016-01-07
ISBN : 1466697687
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Big data has presented a number of opportunities across industries. With these opportunities come a number of challenges associated with handling, analyzing, and storing large data sets. One solution to this challenge is cloud computing, which supports a massive storage and computation facility in order to accommodate big data processing. Managing and Processing Big Data in Cloud Computing explores the challenges of supporting big data processing and cloud-based platforms as a proposed solution. Emphasizing a number of crucial topics such as data analytics, wireless networks, mobile clouds, and machine learning, this publication meets the research needs of data analysts, IT professionals, researchers, graduate students, and educators in the areas of data science, computer programming, and IT development.

Unstructured Data Analytics

Unstructured Data Analytics Book
Author : Jean Paul Isson
Publisher : John Wiley & Sons
Release : 2018-03-02
ISBN : 1119325501
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Turn unstructured data into valuable business insight Unstructured Data Analytics provides an accessible, non-technical introduction to the analysis of unstructured data. Written by global experts in the analytics space, this book presents unstructured data analysis (UDA) concepts in a practical way, highlighting the broad scope of applications across industries, companies, and business functions. The discussion covers key aspects of UDA implementation, beginning with an explanation of the data and the information it provides, then moving into a holistic framework for implementation. Case studies show how real-world companies are leveraging UDA in security and customer management, and provide clear examples of both traditional business applications and newer, more innovative practices. Roughly 80 percent of today's data is unstructured in the form of emails, chats, social media, audio, and video. These data assets contain a wealth of valuable information that can be used to great advantage, but accessing that data in a meaningful way remains a challenge for many companies. This book provides the baseline knowledge and the practical understanding companies need to put this data to work. Supported by research with several industry leaders and packed with frontline stories from leading organizations such as Google, Amazon, Spotify, LinkedIn, Pfizer Manulife, AXA, Monster Worldwide, Under Armour, the Houston Rockets, DELL, IBM, and SAS Institute, this book provide a framework for building and implementing a successful UDA center of excellence. You will learn: How to increase Customer Acquisition and Customer Retention with UDA The Power of UDA for Fraud Detection and Prevention The Power of UDA in Human Capital Management & Human Resource The Power of UDA in Health Care and Medical Research The Power of UDA in National Security The Power of UDA in Legal Services The Power of UDA for product development The Power of UDA in Sports The future of UDA From small businesses to large multinational organizations, unstructured data provides the opportunity to gain consumer information straight from the source. Data is only as valuable as it is useful, and a robust, effective UDA strategy is the first step toward gaining the full advantage. Unstructured Data Analytics lays this space open for examination, and provides a solid framework for beginning meaningful analysis.

Systems of Insight for Digital Transformation Using IBM Operational Decision Manager Advanced and Predictive Analytics

Systems of Insight for Digital Transformation  Using IBM Operational Decision Manager Advanced and Predictive Analytics Book
Author : Whei-Jen Chen,Rajeev Kamath,Alexander Kelly,Hector H. Diaz Lopez,Matthew Roberts,Yee Pin Yheng,IBM Redbooks
Publisher : IBM Redbooks
Release : 2015-12-03
ISBN : 073844118X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.

Marketing Analytics

Marketing Analytics Book
Author : Mike Grigsby
Publisher : Kogan Page Publishers
Release : 2018-04-03
ISBN : 0749482176
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Who is most likely to buy and what is the best way to target them? How can businesses improve strategy without identifying the key influencing factors? The second edition of Marketing Analytics enables marketers and business analysts to leverage predictive techniques to measure and improve marketing performance. By exploring real-world marketing challenges, it provides clear, jargon-free explanations on how to apply different analytical models for each purpose. From targeted list creation and data segmentation, to testing campaign effectiveness, pricing structures and forecasting demand, this book offers a welcome handbook on how statistics, consumer analytics and modelling can be put to optimal use. The fully revised second edition of Marketing Analytics includes three new chapters on big data analytics, insights and panel regression, including how to collect, separate and analyze big data. All of the advanced tools and techniques for predictive analytics have been updated, translating models such as tobit analysis for customer lifetime value into everyday use. Whether an experienced practitioner or having no prior knowledge, methodologies are simplified to ensure the more complex aspects of data and analytics are fully accessible for any level of application. Complete with downloadable data sets and test bank resources, this book supplies a concrete foundation to optimize marketing analytics for day-to-day business advantage.

Effective Data Storytelling

Effective Data Storytelling Book
Author : Brent Dykes
Publisher : John Wiley & Sons
Release : 2019-12-10
ISBN : 1119615739
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Master the art and science of data storytelling—with frameworks and techniques to help you craft compelling stories with data. The ability to effectively communicate with data is no longer a luxury in today’s economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative—to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories. Narratives are more powerful than raw statistics, more enduring than pretty charts. When done correctly, data stories can influence decisions and drive change. Most other books focus only on data visualization while neglecting the powerful narrative and psychological aspects of telling stories with data. Author Brent Dykes shows you how to take the three central elements of data storytelling—data, narrative, and visuals—and combine them for maximum effectiveness. Taking a comprehensive look at all the elements of data storytelling, this unique book will enable you to: Transform your insights and data visualizations into appealing, impactful data stories Learn the fundamental elements of a data story and key audience drivers Understand the differences between how the brain processes facts and narrative Structure your findings as a data narrative, using a four-step storyboarding process Incorporate the seven essential principles of better visual storytelling into your work Avoid common data storytelling mistakes by learning from historical and modern examples Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals is a must-have resource for anyone who communicates regularly with data, including business professionals, analysts, marketers, salespeople, financial managers, and educators.

Intelligent Data Engineering and Automated Learning IDEAL 2012

Intelligent Data Engineering and Automated Learning    IDEAL 2012 Book
Author : Hujun Yin,Jose A.F. Costa,Guilherme Barreto
Publisher : Springer
Release : 2012-08-01
ISBN : 3642326390
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book constitutes the refereed proceedings of the 13th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2012, held in Natal, Brazil, in August 2012. The 100 revised full papers presented were carefully reviewed and selected from more than 200 submissions for inclusion in the book and present the latest theoretical advances and real-world applications in computational intelligence.

Social Data Analytics

Social Data Analytics Book
Author : Krish Krishnan,Shawn P. Rogers
Publisher : Newnes
Release : 2014-11-10
ISBN : 0123977800
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Social Data Analytics is the first practical guide for professionals who want to employ social data for analytics and business intelligence (BI). This book provides a comprehensive overview of the technologies and platforms and shows you how to access and analyze the data. You'll explore the five major types of social data and learn from cases and platform examples to help you make the most of sentiment, behavioral, social graph, location, and rich media data. A four-step approach to the social BI process will help you access, evaluate, collaborate, and share social data with ease. You'll learn everything you need to know to monitor social media and get an overview of the leading vendors in a crowded space of BI applications. By the end of this book, you will be well prepared for your organization’s next social data analytics project. Provides foundational understanding of new and emerging technologies—social data, collaboration, big data, advanced analytics Includes case studies and practical examples of success and failures Will prepare you to lead projects and advance initiatives that will benefit you and your organization