Skip to main content

Computational Methods For Fracture In Porous Media

In Order to Read Online or Download Computational Methods For Fracture In Porous Media Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Computational Methods for Fracture in Porous Media

Computational Methods for Fracture in Porous Media Book
Author : René de Borst
Publisher : Elsevier
Release : 2017-10-30
ISBN : 0081009232
Language : En, Es, Fr & De

GET BOOK

Book Description :

Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods provides a self-contained presentation of new modeling techniques for simulating crack propagation in fluid-saturated porous materials. This book reviews the basic equations that govern fluid-saturated porous media. A multi-scale approach to modeling fluid transport in joins, cracks, and faults is described in such a way that the resulting formulation allows for a sub-grid representation of the crack and fluid flow in the crack. Interface elements are also analyzed with their extension to the hydromechanical case. The flexibility of Extended Finite Element Method for non-stationary cracks is also explored and their formulation for fracture in porous media described. This book introduces Isogeometric finite element methods and its basic features and properties. The rapidly evolving phase-field approach to fracture is also discussed. The applications of this book’s content cover various fields of engineering, making it a valuable resource for researchers in soil, rock and biomechanics. Teaches both new and upcoming computational techniques for simulating fracture in (partially) fluid-saturated porous media Helps readers learn how to couple modern computational methods with non-linear fracture mechanics and flow in porous media Presents tactics on how to simulate fracture propagation in hydraulic fracturing

Numerical Methods for Processes in Fractured Porous Media

Numerical Methods for Processes in Fractured Porous Media Book
Author : Alessio Fumagalli,Inga Berre,Luca Formaggia,Eirik Keilegavlen,Anna Scotti
Publisher : Birkhäuser
Release : 2019-08-21
ISBN : 9783030269401
Language : En, Es, Fr & De

GET BOOK

Book Description :

This volume collects state-of-the-art contributions on the numerical simulation of fractured porous media, focusing on flow and geomechanics. First appearing in issues of the International Journal on Geomathematics, these articles are now conveniently packaged in one volume. Of particular interest to readers will be the potential applications of modern numerical methods to the problem of processes in fractured porous media. This book is ideal for computational scientists and numerical analysts interested in recent developments of numerical discretization techniques for underground flow and geomechanics. Engineers and geologists studying modern simulation techniques will also find this a valuable resource.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media Book
Author : Zhangxin Chen,Guanren Huan,Yuanle Ma
Publisher : SIAM
Release : 2006
ISBN : 9780898718942
Language : En, Es, Fr & De

GET BOOK

Book Description :

Computational Methods for Multiphase Flows in Porous Media offers a fundamental and practical introduction to the use of computational methods, particularly finite element methods, in the simulation of fluid flows in porous media. It is the first book to cover a wide variety of flows, including single-phase, two-phase, black oil, volatile, compositional, nonisothermal, and chemical compositional flows in both ordinary porous and fractured porous media. In addition, a range of computational methods are used, and benchmark problems of nine comparative solution projects organized by the Society of Petroleum Engineers are presented for the first time in book form. The book reviews multiphase flow equations and computational methods to introduce basic terminologies and notation. A thorough discussion of practical aspects of the subjects is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Audience: this book can be used as a textbook for graduate or advanced undergraduate students in geology, petroleum engineering, and applied mathematics; as a reference book for professionals in these fields, as well as scientists working in the area of petroleum reservoir simulation; as a handbook for employees in the oil industry who need a basic understanding of modeling and computational method concepts; and by researchers in hydrology, environmental remediation, and some areas of biological tissue modeling. Calculus, physics, and some acquaintance with partial differential equations and simple matrix algebra are necessary prerequisites.

Development of New Computational Methods for Fluid structure Interaction Analysis of Multi fractured Media

Development of New Computational Methods for Fluid structure Interaction Analysis of Multi fractured Media Book
Author : I. de Pouplana
Publisher : Unknown
Release : 2018
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

The objective of this thesis is the derivation and implementation of a robust Finite Element formulation for the solution of solid-pore fluid coupled problems in multi-fractured porous media. A coupled displacement-pore pressure FEM formulation for solving solid-pore fluid interaction problems is first introduced. The interaction between both components is governed by two equations: the balance of momentum for the mixture solid-fluid and the mass balance for the pore fluid. Under nearly undrained-incompressible conditions, such formulation suffers from instability problems because of the violation of Babuska-Brezzi conditions. In order to work with elements of equal order interpolation for the displacement and pore pressure, the formulation is stabilized by means of the Finite Increment Calculus method (FIC). The FIC-stabilized formulation is tested against stable elements with a higher order interpolation for the displacement field in 2D and 3D examples. Continuum damage mechanics is the basis of the crack growth strategy for the proposed fracture propagation technique. The strain softening models used for quasi-brittle materials favour spurious strain localization and ill-posedness of the boundary value problem if the damage variable only depends on the strain state at the point under consideration. An integral-type non-local damage model associated to a characteristic length parameter is presented as a method to control the size of the fracture process zone and fully regularize the problem. Two examples are solved assessing the robustness of the model in front of changes in the spatial discretization. Quasi-zero-thickness interface elements are formulated to represent discontinuities in the porous domain. A bilinear cohesive fracture model is used to describe its mechanical behaviour, and a formulation derived from the cubic law models the fluid flow through the crack. Finally, a new methodology for the simulation of fracture propagation processes in saturated porous media is presented. The non-local damage model is used in conjunction with the interface elements to predict the degradation pattern of the domain and insert new fractures followed by remeshing. Fluid-driven fracture propagation examples in 2D and 3D are presented to illustrate the accuracy of the proposed technique.

Computational Methods in Subsurface Flow

Computational Methods in Subsurface Flow Book
Author : Peter S. Huyakorn
Publisher : Academic Press
Release : 2012-12-02
ISBN : 0323137970
Language : En, Es, Fr & De

GET BOOK

Book Description :

Computational Methods in Subsurface Flow explores the application of all of the commonly encountered computational methods to subsurface problems. Among the problems considered in this book are groundwater flow and contaminant transport; moisture movement in variably saturated soils; land subsidence and similar flow and deformation processes in soil and rock mechanics; and oil and geothermal reservoir engineering. This book is organized into 10 chapters and begins with an introduction to partial differential and various solution approaches used in subsurface flow. The discussion then shifts to the fundamental theory of the finite element method, with emphasis on the Galerkin finite element method and how it can be used to solve a wide range of subsurface problems. The subjects treated range from simple problems of saturated groundwater flow to more complex ones of moisture movement and multiphase flow in petroleum reservoirs. The chapters that follow focus on fluid flow and mechanical deformation of conventional and fractured porous media; point and subdomain collocation techniques and the boundary element technique; and the applications of finite difference techniques to single- and multiphase flow and solute transport. The final chapter is devoted to other alternative numerical methods that are based on combinations of the standard finite difference approach and classical mathematics. This book is intended for senior undergraduate and graduate students in geoscience and engineering, as well as for professional groundwater hydrologists, engineers, and research scientists who want to solve or model subsurface problems using numerical techniques.

Computational Methods for Fracture

Computational Methods for Fracture Book
Author : Timon Rabczuk
Publisher : MDPI
Release : 2019-10-28
ISBN : 3039216864
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media Book
Author : Zhangxin Chen,Guanren Huan,Yuanle Ma
Publisher : Unknown
Release : 2006
ISBN : 9781601190130
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Computational Methods for Multiphase Flows in Porous Media book written by Zhangxin Chen,Guanren Huan,Yuanle Ma, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Computational Methods in Multiphase Flow VI

Computational Methods in Multiphase Flow VI Book
Author : Andrea Alberto Mammoli,C. A. Brebbia
Publisher : WIT Press
Release : 2011-01-01
ISBN : 1845645189
Language : En, Es, Fr & De

GET BOOK

Book Description :

Multiphase flows, which can involve compressible or incompressible linear or nonlinear, fluids, Are found in all areas of technology, at all length scales and flow regimes. In spite of their ubiquitousness, however multiphase flow continues to be one of the most challenging areas of computational mechanics and experimental methods, with numerous problems remaining unsolved to date. Because the multiphase flow problems are so complex, advanced computational and experimental methods are often required to solve the equations that describe them. The many hhallenges include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterizing phase structures, and treating drop breakup and coalescence. Models must be validated, which requires the use of expensive and difficult experimental techniquess. This book presents contributions on the latest research in these techniques, presented at the sixth in a biennial series of conferences on the subject that begain in 2001. Featured topics include: Bubble and drop dynamics, Flow in porous media, Turbulent flow, Multiphase flow simulation, Image processing, Heat transfer, Interaction of gases, liquids and solids, Interface behaviour, Small scale phenomena, Atomization processes, and Liquid film behaviour.

Multiphysics Phase Field Fracture

Multiphysics Phase Field Fracture Book
Author : Thomas Wick
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2020-10-12
ISBN : 3110497395
Language : En, Es, Fr & De

GET BOOK

Book Description :

This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.

Simulation of Hydraulic Stimulation

Simulation of Hydraulic Stimulation Book
Author : Mohammad Komijani
Publisher : Unknown
Release : 2018
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Hydraulic Fracturing (HF) is an effective stimulation process for extracting oil and gas from unconventional low-permeable reservoirs. The process is conducted by injecting high-pressure fluids into the ground to generate fracture networks in rock masses and stimulate natural fractures to increase the permeability of formation and extract oil and gas. Due to the multiple and coupled-physics involved, hydraulic fracturing is a complex engineering process. The extent of the induced fractures and stimulated volume and reactivation of natural faults and fractures are some of the practical issues associated with hydraulic fracturing. Acoustic Emission (AE) monitoring and analysis are used to probe the behaviour of solid materials in such applications. The process of elastic wave propagation induced by an abrupt local release of stored strain energy is known as acoustic, microseismic, and seismic emission (depending on the context and the magnitude of the event). These emissions can be triggered by material bifurcation-instabilities like slope slipping, fault-reactivation, pore collapsing, and cracking - processes that are all categorized as localization phenomena. The microseismic monitoring industry attempts to relate acoustic emissions measured by geophones to the nature of the stimulated volume created during hydraulic fracturing. This process is full of uncertainties and researchers have not yet focused on both explicitly modeling the process of fracture reactivation and the accurate simulation of acoustic wave propagations resulting from the localization. The biggest gap in the modeling literature is that most of the previous works fail to accurately simulate the process of transient acoustic wave propagation through the fractured porous media following the elastic energy release. Instead of explicitly modeling fracturing and acoustic emission, most previous studies have aimed to relate energy release to seismic moment. To overcome some of the existing shortcomings in the numerical modeling of the coupled problem of interface localization-acoustic emission, this thesis is focused on developing new computational methods and programs for the simulation of microseismic wave emissions induced by interface slip instability in fractured porous media. As a coupled nonlinear mixed multi-physics problem, simulation of hydraulic stimulation involves several mathematical and computational complexities and difficulties in terms of modeling, stability, and convergence, such as the inf-sup stability problems that arise from mixed formulations due to the hydro-mechanical couplings and contact conditions. In AE modeling, due to the high-frequency transient nature of the problem, additional numerical problems emerging from the Gibbs phenomenon and artificial period elongation and amplitude decay are also involved. The thesis has three main objectives. The first objective is to develop a numerical model for simulation of wave propagation in discontinuous media, which is fulfilled in Chapter 2 of the thesis. In this chapter a new enriched finite element method is developed for simulation of wave propagation in fractured media. The method combines the advantages of the global Partition-of-Unity Method (PUM) with harmonic enrichment functions via the Generalized Finite Element Method (GFEM) with the local PUM via the Phantom Node Method (PNM). The GFEM enrichments suppress the spurious oscillations that can appear in regular Finite Element Method (FEM) analysis of dynamic/wave propagations due to numerical dispersions and Gibbs phenomenon. The PNM models arbitrary fractures independently of the original mesh. Through several numerical examples it has been demonstrated that the spurious oscillations that appear in propagation pattern of high-frequency waves in PNM simulations can be effectively suppressed by employing the enriched model. This is observed to be especially important in fractured media where both primary waves and the secondary reflected waves are present. The second objective of the thesis is to develop a mixed numerical model for simulation of wave propagation in discontinuous porous media and interface modeling. This objective is realized in Chapter 3 of the thesis. In this chapter, a new enriched mixed finite element model is introduced for simulation of wave propagation in fractured porous media, based on an extension of the developed numerical method in Chapter 2. Moreover, frictional contact at interfaces is modeled and realized using an augmented Lagrange multiplier scheme. Through various numerical examples, the effectiveness of the developed enriched FE model over conventional approaches is demonstrated. Moreover, it is shown that the most accurate wave results with the least amount of spurious oscillations are achieved when both the displacement and pore pressure fields are enriched with appropriate trigonometric functions. The third objective of the thesis is to develop computational models for the simulation of acoustic emissions induced by fracture reactivation and shear slip. This objective is realized in Chapter 4 of the thesis. In this chapter, an enriched mixed finite element model (introduced in Chapter 3) is developed to simulate the interface slip instability and the associated induced acoustic wave propagation processes, concurrently. Acoustic events are triggered through a sudden release of strain energy at the fracture interfaces due to shear slip instability. The shear slip is induced via hydraulic stimulation that switches the interface behaviour from a stick to slip condition. The superior capability of the proposed enriched mixed finite element model (i.e., PNM-GFEM-M) in comparison with regular finite element models in inhibiting the spurious oscillations and numerical dispersions of acoustic signals in both velocity and pore pressure fields is demonstrated through several numerical studies. Moreover, the effects of different characteristics of the system, such as permeability, viscous damping, and friction coefficient at the interface are investigated in various examples.

Computational Methods in Environmental Fluid Mechanics

Computational Methods in Environmental Fluid Mechanics Book
Author : Olaf Kolditz
Publisher : Springer Science & Business Media
Release : 2013-03-09
ISBN : 3662047616
Language : En, Es, Fr & De

GET BOOK

Book Description :

Fluids play an important role in environmental systems appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport as well as deformation processes in subsurface systems. In this reference work the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations as well as its object-oriented computer implementation are discussed and illustrated with examples. Finally, the application of computer models in civil and environmental engineering is demonstrated.

Multiscale Methods in Computational Mechanics

Multiscale Methods in Computational Mechanics Book
Author : René de Borst,Ekkehard Ramm
Publisher : Springer Science & Business Media
Release : 2010-10-09
ISBN : 9789048198092
Language : En, Es, Fr & De

GET BOOK

Book Description :

This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.

Computational Methods in Geosciences

Computational Methods in Geosciences Book
Author : William Edward Fitzgibbon,Mary Fanett Wheeler,Society for Industrial and Applied Mathematics
Publisher : SIAM
Release : 1992-01-01
ISBN : 9780898713015
Language : En, Es, Fr & De

GET BOOK

Book Description :

Discusses a dozen topics related to mathematical and computational issues in geophysical fluid and solid mechanics, including local grid refinement for reservoir simulation, a method of factoring long z-transform polynomials, and the finite element modelling of surface flow problems. See entry QC155

Numerical Methods in Geomechanics Volume 1

Numerical Methods in Geomechanics Volume 1 Book
Author : G. Swoboda
Publisher : Routledge
Release : 2017-11-01
ISBN : 1351427679
Language : En, Es, Fr & De

GET BOOK

Book Description :

First Published in 2017. Routledge is an imprint of Taylor & Francis, an Informa company.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids Book
Author : Laura De Lorenzis,Alexander Düster
Publisher : Springer Nature
Release : 2020-02-08
ISBN : 3030375188
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Analysis and Design Methods

Analysis and Design Methods Book
Author : Catherine Fairhurst
Publisher : Elsevier
Release : 2014-06-28
ISBN : 1483297969
Language : En, Es, Fr & De

GET BOOK

Book Description :

Analysis and Design Methods

Advances in Discretization Methods

Advances in Discretization Methods Book
Author : Giulio Ventura,Elena Benvenuti
Publisher : Springer
Release : 2016-08-24
ISBN : 3319412469
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

Fluid Flow in Fractured Porous Media

Fluid Flow in Fractured Porous Media Book
Author : Yujing Jiang,Richeng Liu
Publisher : MDPI
Release : 2019-09-30
ISBN : 303921473X
Language : En, Es, Fr & De

GET BOOK

Book Description :

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Computational Methods and Experiments in Materials Characterization II

Computational Methods and Experiments in Materials Characterization II Book
Author : C. A. Brebbia,Andrea Alberto Mammoli
Publisher : WIT Press
Release : 2005-01-01
ISBN : 1845640314
Language : En, Es, Fr & De

GET BOOK

Book Description :

Bringing together the work of practitioners in many fields of engineering, materials and computational science, this book includes most of the papers presented at the Second International Conference on Material Characterisation. Compiled with the central aim of encouraging interaction between experimentalists and modelers, the contributions featured are divided under the following sections: MICROSTRUCTURES ? Composites; Alloys; Ceramics; Cements; Foams; Suspensions; Biomaterials; Thin Films; Coatings. EXPERIMENTAL METHODS - Optical Imaging; SEM, TEM; X-Ray Microtomography; Ultrasonic Techniques; NMR/MRI; Micro/Nano Indentation; Thermal Analysis; Surface Chemistry. COMPUTATIONAL METHODS - Continuum Methods (FEM, FV, BEM); Particle Models (MD, DPD, Lattice-Boltzmann); Montecarlo Methods; Cellular Automata; Hybrid Multiscale Methods; and Damage Mechanics.

Extended Finite Element Method

Extended Finite Element Method Book
Author : Amir R. Khoei
Publisher : John Wiley & Sons
Release : 2015-02-23
ISBN : 1118457684
Language : En, Es, Fr & De

GET BOOK

Book Description :

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Extended Finite Element Method: Theory and Applications introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics. The XFEM approach is based on an extension of standard finite element method based on the partition of unity method. Extended Finite Element Method: Theory and Applications begins by introducing the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. It then covers the theory and application of XFEM in large deformations, plasticity and contact problems. The implementation of XFEM in fracture mechanics, including the linear, cohesive, and ductile crack propagation is also covered. The theory and applications of the XFEM in multiphase fluid flow, including the hydraulic fracturing in soil saturated media and crack propagation in thermo-hydro-mechanical porous media, is also discussed in detail. Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples