Skip to main content

Characterization Of Biomaterials

In Order to Read Online or Download Characterization Of Biomaterials Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Amit Bandyopadhyay,Susmita Bose
Publisher : Newnes
Release : 2013-03-12
ISBN : 0124158633
Language : En, Es, Fr & De

GET BOOK

Book Description :

One of the key challenges current biomaterials researchers face is identifying which of the dizzying number of highly specialized characterization tools can be gainfully applied to different materials and biomedical devices. Since this diverse marketplace of tools and techniques can be used for numerous applications, choosing the proper characterization tool is highly important, saving both time and resources. Characterization of Biomaterials is a detailed and multidisciplinary discussion of the physical, chemical, mechanical, surface, in vitro and in vivo characterization tools and techniques of increasing importance to fundamental biomaterials research. Characterization of Biomaterials will serve as a comprehensive resource for biomaterials researchers requiring detailed information on physical, chemical, mechanical, surface, and in vitro or in vivo characterization. The book is designed for materials scientists, bioengineers, biologists, clinicians and biomedical device researchers seeking input on planning on how to test their novel materials, structures or biomedical devices to a specific application. Chapters are developed considering the need for industrial researchers as well as academics. Biomaterials researchers come from a wide variety of disciplines: this book will help them to analyze their materials and devices taking advantage of the multiple experiences on offer. Coverage encompasses a cross-section of the physical sciences, biological sciences, engineering and applied sciences characterization community, providing gainful and cross-cutting insight into this highly multi-disciplinary field. Detailed coverage of important test protocols presents specific examples and standards for applied characterization

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Ryan K. Roeder
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128070978
Language : En, Es, Fr & De

GET BOOK

Book Description :

The design of biomedical devices almost always involves some form of mechanical characterization of biomaterials. This chapter provides a broad overview of experimental methods and important considerations for mechanical characterization of biomaterials, with special attention to the practical needs of engineers and scientists who encounter a need to characterize the mechanical properties of a biomaterial but may not know where to begin or what the key considerations should be. Many details are necessarily omitted from this broad overview, but numerous references are provided for greater technical depth on a particular topic, standardized methodologies, and exemplary studies. Fundamental concepts are introduced, beginning with stress and strain versus force and displacement. The mechanical properties measured from a stress–strain curve, different types of stress–strain curves, and corresponding constitutive models are reviewed, including differences in material classes and anisotropy. Three primary methods of analysis for fracture mechanics are introduced, including stress concentrations, energy criteria for crack initiation and propagation (fracture toughness), and statistical methods for the probability of fracture. The mechanical characterization of biomaterials begins with selection and preparation of standardized test specimens, which are critical to obtaining accurate and reproducible measurements of material properties. Practical considerations are outlined for selection and preparation of the specimen size, geometry, surface finish, and precracking. The mechanical characterization of biomaterial test specimens always involves the application and measurement of load and deformation. Practical considerations are outlined for the selection and use of load frames, load cells, load fixtures, extensometers, and strain gauges. A number of common loading modes are introduced and compared: uniaxial tension, uniaxial compression, biaxial tension, torsion, diametral compression, three-point bending, four-point bending, and in-plane shear (including biomaterial-tissue interfacial shear strength). Strain-rate sensitivity or time-dependent behavior can profoundly influence stress–strain behavior and thus measured mechanical properties. The effects of high strain rates may be characterized by impact testing using a pendulum, drop tower, or split Hopkinson pressure bar. The effects of low strain rates may be characterized by creep deformation or creep rupture tests. The time-dependent behavior of viscoelastic materials is introduced, including creep, stress relaxation, common constitutive models, and practical considerations for testing. The frequency of loading, or cyclic loading, is another aspect of time-dependent behavior, which is critical for mechanical characterization of biomaterials, leading to fatigue deformation and failure or viscoelastic creep and stress relaxation. Practical considerations are described for selecting the waveform, frequency, cyclic stress/strain levels, loading mode, and test duration. Common methods are introduced for fatigue lifetime testing (including S-N curves, notch factors, and fatigue damage), fatigue crack propagation, and dynamic mechanical analysis (DMA). Nondestructive tests are particularly useful for sampling small volumes of a biomaterial (e.g., implant retrieval or biopsy) or characterizing spatial heterogeneity in mechanical properties. Various indentation tests and indenter geometries are introduced and compared, including classic hardness (Brinell and Rockwell), microhardness (Knoop and Vickers), and instrumented nanoindentation (Berkovich, cube corner, etc.). Methods and limitations are described for characterizing the reduced modulus, viscoelasticity, and fracture toughness using indentation. Ultrasonic wave-propagation methods are also introduced with an emphasis on methods for characterizing anisotropic elastic constants. Biomaterials are typically subjected to various sterilization methods prior to service and an aqueous physiological environment in service. Therefore, the effects of temperature, pressure, various aqueous media (water, phosphate buffered saline (PBS), media, foetal bovine serum (FBS), lipids, etc.), and irradiation on mechanical characterization of biomaterials are considered, including the degradation of mechanical properties by various mechanisms involving water uptake, hydrolysis, and oxidation. Finally, methods and guidelines are provided for data acquisition from transducers and data analysis, including an introduction to some basic statistical methods.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Samit K. Nandi,Subhasish Biswas
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 012807101X
Language : En, Es, Fr & De

GET BOOK

Book Description :

The use of biomaterials has become indispensable in modern medicine that includes primarily for the restoration of function as well as drug carriers. Biomaterials developed for bone, cartilage, ligament, tendon, skeletal muscle, dental, and other musculoskeletal applications almost always necessitate mechanical properties characterization to guarantee that they are robust enough for their in vivo functionality. In addition, mechanical conditioning often has a direct consequence on cellular behaviors such as differentiation, extracellular matrix production, migration, and proliferation. There is imperative necessity to get real-time data of tissue development in vivo in response to various biomechanical stimuli such as tension/compression, bending, torsion, and steady or dynamic fluid flow of construct that allows experimental protocol changes to be made early. In vitro characterization is unable to exhibit the tissue response to materials, instead being limited to the response of individual cell lines or primary cells taken from animals. Considering the wide and ever-increasing use of biomaterials in different fields of veterinary and medical sciences with its effective use in emerging fields, the characterization in respect to cellular response in the living system and its effect thereafter for leading a physiologic life, a comprehensive understanding have to be developed in totality. Further, implant safety such as avoidance of adverse tissue reaction and resistance to wear and corrosion are of high clinical significance for implants used in long-term clinical situations. The characterization along with related factors like histological, histomorphological, biochemical, radiological, scanning and transmission electron microscopic, fluorochrome labelling, biomechanical, micro-CT analysis, immunohistochemistry in orthopaedic and soft tissue surgery have been tried to elucidate with emphasis on in vivo applications of biomaterials. Amid various characterization parameters, histology is one of the most important tools to assess cellular reactions in the implant–tissue interface that can be carried out by both undecalcified and decalcified bone specimens. Histomorphometry can directly help in quantitative measurement (percentage) of newly formed bone in the implanted scaffold using semiautomatic image analysis software and also sometimes determines the host's vascularization. Histochemistry can be used to observe connective tissue ingrowth within the scaffold. The morphology and the proliferating cells can be evaluated by immunohistochemical technique. Biochemical markers like serum calcium, phosphorus, alkaline phosphatase, and osteocalcin help in evaluating the progress of healing and tartrate-resistant acid phosphatase for determining the osteoclasts activity. To understand the mechanisms of unusual bone remodelling, a number of different fluorescent stains like calcein green, tetracycline, alizarin red derivatives and xylenol orange have been developed to detect and quantify bone mineralization. Angiogenesis within the scaffold can be observed and quantified by angiography, osteomedullography, micro-CT, immunostaining with von Willebrand factor stain and intravital microscopy. Biomechanical testing is essential for quantitative assessment of implant integration and contact percentage between implant materials with the host tissue and can be performed by pull-out or push-out tests. Surface analysis and the interaction with bone tissue can be best detected by scanning electron microscopy. Non-invasive techniques include radiological, micro-CT analysis, densitometry study and ultrasound elasticity imaging (UEI). Radiological study helps to assess the union at the host bone–implant interfaces during the follow-up period and should be carried out at regular and calculated interval. Micro-CT is also a non-invasive technique and has great potential in characterization of biomaterials in regard to pore size and spatial distribution of newly formed bone together with quantitative information. Densitometric evaluation is helpful for estimating bone mineral content and density. UEI provides more information of scaffold degradation and tissue development. Finally, targeted delivery system needs quantitative measurements of biodistributable materials which can be best accomplished by computed tomography (CT), fluorescence imaging, inductively coupled atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, micro-positron emission tomography, MRI imaging, and radiography. This chapter is primarily on hands-on experience in surgical manipulation of different biomaterials like hydroxyapatite, tricalcium phosphate, bioactive glass, metals, chitosan, as well as natural coralline hydroxyapatite. Different characterization techniques elaborated in this chapter can show a road map to the researchers, scientists, teachers and readers in this field of biomaterials to understand fundamental aspects of materials and related tissue response to the system in vivo. It can also provide clues for further research in the future towards this emerging field.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Julia Will,Rainer Detsch,Aldo R. Boccaccini
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128071028
Language : En, Es, Fr & De

GET BOOK

Book Description :

In order to enhance the application potential of scaffolds in tissue engineering, comprehensive characterization of scaffold micro- and macro-structure, porosity, permeability and mechanical properties are required. In addition, before in vivo studies can be carried out, a complete assessment of the in vitro behavior of scaffolds, e.g. in selected cell culture studies, is required. The present chapter revises the wide range of methods applied to characterize scaffolds and emphasizes the need for a combination of different characterization techniques for understanding scaffold performance required for successful bone regeneration.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Nehal I. Abu-Lail,Haluk Beyenal
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128071001
Language : En, Es, Fr & De

GET BOOK

Book Description :

Bacterial adhesion to biomaterials is generally accepted to be the first step in the development of biomaterial-centred bacterial infections (BCBIs). A better understanding of how bacteria interact with biomaterials is essential to the development of surgical intervention strategies that can be used to reduce BCBIs and coatings capable of preventing bacterial adhesion to their surfaces. Bacterial adhesion to a surface is a multi-step process during which single bacterial cells first initiate attachment to the biomaterial, followed by biofilm formation. The first part of this chapter is devoted to an exploration of how the initial bacterial adhesion to biomaterials can be quantified while the second part focuses on how biofilms can be imaged and how such images can be processed to quantify biofilm structure. We have paid special attention to guiding future biomaterials scientists on the best practices currently used in quantifying bacterial interactions with biomaterials at the nano- and macroscales.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Susmita Bose,Amit Bandyopadhyay
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128070951
Language : En, Es, Fr & De

GET BOOK

Book Description :

This brief introductory chapter provides a broad overview of materials, biomaterials and the need to understand different techniques to characterize biomaterials. From this chapter, the reader can gain a perspective on how the rest of the topics in different chapters are divided to fully comprehend this inherently multidisciplinary field. Application of appropriate characterization tools can not only save time to fully evaluate different biomaterials, it can also make commercial biomedical devices safer. In the long run, safer biomedical devices can only reduce the pain and suffering of mankind, a dream that resonates with every biomedical researcher.

Surface Characterization of Biomaterials

Surface Characterization of Biomaterials Book
Author : Buddy D. Ratner
Publisher : Elsevier Science Limited
Release : 1988-01-01
ISBN : 9780444430168
Language : En, Es, Fr & De

GET BOOK

Book Description :

Surface Characterization of Biomaterials is the first book to define the scope of contemporary research in this area by presenting articles from almost all the groups worldwide who are utilizing both new and traditional methods to explore the surfaces of biomaterials. The book contains introductory, tutorial articles on important methods, perspective articles clarifying why these methods are important to biomaterials science, and sixteen research articles illustrating how these tools are being used by most of the leaders in this field. The techniques featured include ESCA, static SIMS, contact angle methods, scanning electron stimulated desorption microscopy, Fourier transform infrared methods, and transmission electron microscopy. The classes of materials described include polymers, ceramics and metals. Surface modification of many of these materials is discussed. The biological problems addressed include blood compatibility, cell adhesion, osteointegration, and protein adsorption. The book will be welcomed by researchers and manufacturers interested in biomaterials. Experts in the field will find an overview of contemporary research.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Imran Khan,Malcolm Naylor,Gautam Gupta
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128071044
Language : En, Es, Fr & De

GET BOOK

Book Description :

Preclinical testing is a critical part of the orthopaedic device design process and is required to demonstrate efficacy, safety and adherence to the requirements of essential regulations. The following chapter provides an overview of the key regulatory and technical requirements associated with mechanical and tribological testing of orthopaedic devices and the characterization of metallic coatings applied to such devices for improved biological fixation. Mechanical testing is typically carried out according to regional or international standards that define the type of device to be tested, its laboratory-based performance requirements and reference criteria that a product must meet. The most widely used tests for orthopaedic devices are static or fatigue tests. These may be conducted under compression, bending, shear or torsion, depending on the in vivo loading conditions that they are trying to replicate. Bearing wear simulator test methods have evolved over several decades from simpler tests such as pin-on-plate to more realistic tests that replicate the forces and motions experienced during walking or other gait cycles and, importantly, allow the testing of actual components. Current wear simulator test standards for hip and knee joints are reviewed and methods of characterizing wear debris and measuring friction are discussed. Metallic coatings on orthopaedic devices can be employed to improve the fixation of the implant to the host bone. This chapter discusses methods to characterize critical properties of metallic coatings for orthopaedic devices and also identifies the acceptance standards set by regulatory bodies for these kinds of coatings.

Marine Biomaterials

Marine Biomaterials Book
Author : Se-Kwon Kim
Publisher : CRC Press
Release : 2013-04-11
ISBN : 1466505656
Language : En, Es, Fr & De

GET BOOK

Book Description :

Oceans are an abundant source of diverse biomaterials with potential for an array of uses. Marine Biomaterials: Characterization, Isolation and Applications brings together the wide range of research in this important area, including the latest developments and applications, from preliminary research to clinical trials. The book is divided into four parts, with chapters written by experts from around the world. Biomaterials described come from a variety of marine sources, such as fish, algae, microorganisms, crustaceans, and mollusks. Part I covers the isolation and characterization of marine biomaterials—bioceramics, biopolymers, fatty acids, toxins and pigments, nanoparticles, and adhesive materials. It also describes problems that may be encountered in the process as well as possible solutions. Part II looks at biological activities of marine biomaterials, including polysaccharides, biotoxins, and peptides. Chapters examine health benefits of the biomaterials, such as antiviral activity, antidiabetic properties, anticoagulant and anti-allergic effects, and more. Part III discusses biomedical applications of marine biomaterials, including nanocomposites, and describes applications of various materials in tissue engineering and drug delivery. Part IV explores commercialization of marine-derived biomaterials—marine polysaccharides and marine enzymes—and examines industry perspectives and applications. This book covers the key aspects of available marine biomaterials for biological and biomedical applications, and presents techniques that can be used for future isolation of novel materials from marine sources.

Characterization of Polymeric Biomaterials

Characterization of Polymeric Biomaterials Book
Author : Maria Cristina Tanzi,Silvia Farè
Publisher : Woodhead Publishing
Release : 2017-06-20
ISBN : 0081007434
Language : En, Es, Fr & De

GET BOOK

Book Description :

Characterization of Polymeric Biomaterials presents a comprehensive introduction on the topic before discussing the morphology and surface characterization of biomedical polymers. The structural, mechanical, and biological characterization is described in detail, followed by invaluable case studies of polymer biomaterial implants. With comprehensive coverage of both theoretical and experimental information, this title will provide scientists with an essential guide on the topic of these materials which are regularly used for clinical applications, such as implants and drug delivery devices. However, a range of novel polymers and the development and modification of existing medical polymers means that there is an ongoing need to satisfy particular design requirements. This book explains the critical and fundamentals methods to characterize polymer materials for biomedical applications. Presents a self-contained reference on the characterization of polymeric biomaterials Provides comprehensive information on how to characterize biomedical polymers in order to improve design and synthesis Includes useful case studies that demonstrate the characterization of biomaterial implants

Characterization and Development of Biosystems and Biomaterials

Characterization and Development of Biosystems and Biomaterials Book
Author : Andreas Öchsner,Lucas F. M. da Silva,Holm Altenbach
Publisher : Springer Science & Business Media
Release : 2012-12-16
ISBN : 3642314708
Language : En, Es, Fr & De

GET BOOK

Book Description :

This collection of recent activities provides researchers and scientists with the latest trends in characterization and developments of biosystems and biomaterials. Well known experts present their research in materials for drug delivery, dental implants and filling materials, biocompatible membranes, bioactive surface coatings and bio-compatible and eco-sustainable building materials. In The book covers also topics like microorganisms, the human eye, the musculoskeletal system and human body parts.

Characterization of Biomaterials

Characterization of Biomaterials Book
Author : Huaiyu Wang,Paul K. Chu
Publisher : Elsevier Inc. Chapters
Release : 2013-03-12
ISBN : 0128070986
Language : En, Es, Fr & De

GET BOOK

Book Description :

The biomaterials surface, which may only be a few atomic layers thick, constitutes the important interface between the biomaterials and the external biological environment and plays a key role in the chemical and biological actions in vitro and in vivo. Hence, in order to monitor and fathom the biological performance of biomaterials, the surface properties must be well known. Recently, surface modification of biomaterials has attracted considerable attention as selective surface properties such as cytocompatibility can be altered while desirable bulk properties such as mechanical strength can be retained. In this respect, surface characterization techniques are indispensable in this important and burgeoning research area. No single technique can provide all the information, and quite often, different analytical tools are required to address a problem related to biomaterials research. To obtain surface chemical and morphological information, spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and microscopic methods such as confocal microscopy, scanning electron microscopy, atomic force microscopy (AFM) are typically carried out. Other surface characterization methods such as contact angle (CA) measurement and ellipsometry are also widely used in biomaterials research. It should be emphasized that each technique has its strengths and weaknesses, and complete characterization frequently requires more than one method. In this chapter, we introduce and describe some of the common surface characterization techniques suitable for biomaterials. Initial discussion starts with spectroscopic techniques, their operation principles, and data analysis with specific examples. The discussions related to spectroscopic characterization are focused on XPS, AES, SIMS, surface matrix-assisted laser desorption ionization mass spectrometry (Surface-MALDI-MS), infrared spectroscopy, Raman spectroscopy, electron energy loss spectroscopy and ultraviolet spectroscopy. After spectroscopic characterization techniques, this chapter focuses on microscopic characterization. This part of the chapter is specifically focused on optical, electron and confocal microscopic techniques. Microscopic technique also discusses recent advances in atomic level characterization using scanning tunnelling microscopy and AFM. Finally, the chapter deals with specific surface characterization techniques for morphology with profilometry followed by surface charge measurement using CAs. The last section of the chapter deals with ellipsometry, a specular optical technique which provides unequalled capabilities for thin film metrology. Throughout this chapter, specific discussions are focused on examples based on applications as well as advantages, disadvantages, and challenges.

Inorganic Biomaterials

Inorganic Biomaterials Book
Author : Xiang C Zhang
Publisher : Smithers Rapra
Release : 2014-06-26
ISBN : 1909030414
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a new concept on mechanical compatibility - 'mechacompatibility'. Almost all implant biomaterials employed to date, such as metal and ceramic implants, do not meet this biological requirement as they have far higher modulus than any biomaterials in the body. The practical techniques that are used in the characterization of biomaterials, including chemical, physical, biological, microscopy and mechanical characterization are described. Some specialised techniques are also introduced such as Synchrotron Micro-Computed Tomography (u-CT) and Magnetic Resonance Imaging (MRI). The reader is given important information on new biomaterials development for orthopaedic and other areas, including controlled release technology, hydroxyapatite and hybrid bioresorbable materials. Finally the book provides a guide to regulatory considerations, an area which is often overlooked, but is an important part of R&D and manufacturing of medical materials and devices.

Nano and Biomaterials

Nano  and Biomaterials Book
Author : Zhypargul Abdullaeva
Publisher : John Wiley & Sons
Release : 2017-10-23
ISBN : 3527342702
Language : En, Es, Fr & De

GET BOOK

Book Description :

A comprehensive introduction to nano- and biomaterials shining light on the different research disciplines from various perspectives. The straightforward and well-structured concept is designed to cater for entrants as well as experienced researchers in the field of nanotechnology. The initial chapters introduce nanomaterials, their classification and synthesis techniques, while subsequent chapters discuss the various characterization tools as well as mechanical properties and their applications in biotechnological and biomedical fields. Further understanding of the topic is supported by case studies used for practical purposes. The book concludes with a look at future technology advances. With its explanation of a wide variety of materials, this is an essential reference for chemists, physicists, materials scientists and biomedical engineers.

Biomaterials

Biomaterials Book
Author : Rosario Pignatello,Teresa Musumeci
Publisher : BoD – Books on Demand
Release : 2018-05-02
ISBN : 1789230640
Language : En, Es, Fr & De

GET BOOK

Book Description :

This contribution book collects five among reviews and original articles from eminent experts working in the interdisciplinary area of biomaterial synthesis and application. From their direct and recent experience, the readers can access the novel and ongoing potentialities of different synthetic and engineered biomaterials. Contributions reflect the fundamental studies, with a particular attention to the physico-chemical mechanical characterization of biomaterials, along with biocompatibility studies and potential clinical use. After an introductory chapter on the question of storage stability for biomaterial-based devices and products and for polymeric nanomedicines, a first review deals with the use and commercial sources of hydroxyapatite in tissue engineering and other biomedical applications. A study follows on optical fiber laser marking on the properties of stainless steel in implant manufacturing. Two other reviews, respectively, focused on the approaches to prevent or treat the effects of calcification that occurs in vivo on biomaterial-based implants and on the encapsulation of pancreatic islet cells for the treatment of type I diabetes will be presented. Finally, an overview on the physical bases and application in biomaterial science of the spray-drying process will close the volume. This setting will allow to achieve a general view of how classical and novel biomaterials can be applied, along with the methodologies necessary to design, develop, and characterize them, without the restrictions necessarily imposed by industrial or profit concerns. Readers will be apprised about the methodologies used to develop biomaterials possessing the physical and biological properties needed for specific medical and clinical applications.

Biomaterial from Oil Palm Waste Properties Characterization and Applications

Biomaterial from Oil Palm Waste  Properties  Characterization and Applications Book
Author : Rudi Dungani
Publisher : Unknown
Release : 2018
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Oil palm are among the best known and most extensively cultivated plant families, especially Indonesia and Malaysia. Many common products and foods are derived from oil palm, its making them one of the most economically important plants. On the other hand, declining supply of raw materials from natural resources has motivated researchers to find alternatives to produce new materials from sustainable resources like oil palm. Oil palm waste is possibly an ideal source for cellulose-based natural fibers and particles. Generally, oil palm waste such as oil palm empty fruit bunches, oil palm trunk, oil palm shell and oil palm ash are good source of biomaterials. Lack of sufficient documentation of existing scientific information about the utilization of oil palm waste raw materials for biomaterial production is the driving force behind the this chapter. Incorporation of various types of biomaterial derived from oil palm waste resources as reinforcement in polymer matrices lead to the development of biocomposites products and this can be used in wide range of potential applications. Properties and characterization of biomaterial from oil palm waste will not only help to promote further study on nanomaterials derived from non-wood materials but also emphasize the importance of commercially exploit oil palm waste for sustainable products.

Self assembling Biomaterials

Self assembling Biomaterials Book
Author : Helena S. Azevedo,Ricardo M. P. da Silva
Publisher : Woodhead Publishing
Release : 2018-04-17
ISBN : 0081020120
Language : En, Es, Fr & De

GET BOOK

Book Description :

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. Explores both theoretical and practical aspects of self-assembly in biomaterials Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials Examines the use of dynamic self-assembling biomaterials

Introduction to Biomaterials

Introduction to Biomaterials Book
Author : J. L. Ong,Mark R. Appleford,Gopinath Mani
Publisher : Cambridge University Press
Release : 2013-11-07
ISBN : 0521116902
Language : En, Es, Fr & De

GET BOOK

Book Description :

A succinct introduction to the field of biomaterials engineering, packed with practical insights.

Introduction To Biomaterials

Introduction To Biomaterials Book
Author : Donglu Shi
Publisher : World Scientific
Release : 2005-12-20
ISBN : 9814478792
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides a comprehensive introduction to the fundamentals of biomaterials including ceramics, metals, and polymers.Researchers will benefit from the interdisciplinary perspectives of contributors in diverse areas such as orthopedics, biochemistry, biomedical engineering, materials science, tissue engineering and other related medical fields.Both graduate and undergraduate students will find it a valuable reference on tissue engineering related topics, including biostructures and phase diagrams of complex systems, hard tissue prosthetics, novel biomaterials processing methods, and new materials-characterization techniques.

Metallic Biomaterial Interfaces

Metallic Biomaterial Interfaces Book
Author : Jürgen Breme,C. James Kirkpatrick,Roger Thull
Publisher : John Wiley & Sons
Release : 2008-03-31
ISBN : 9783527318605
Language : En, Es, Fr & De

GET BOOK

Book Description :

Clearly divided into three sections on the interface influence of materials and surface modifications, the physical and physicochemical surface characterization, and the biological characterization of the interface and biosystem reactions, this book is the first to concentrate on the highly important area of metal-based implants and their improved functionality and acceptance by the body.