Skip to main content

Building Big Data Applications

In Order to Read Online or Download Building Big Data Applications Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Building Big Data Applications

Building Big Data Applications Book
Author : Krish Krishnan
Publisher : Academic Press
Release : 2019-11-15
ISBN : 0128158042
Language : En, Es, Fr & De

GET BOOK

Book Description :

Building Big Data Applications helps data managers and their organizations make the most of unstructured data with an existing data warehouse. It provides readers with what they need to know to make sense of how Big Data fits into the world of Data Warehousing. Readers will learn about infrastructure options and integration and come away with a solid understanding on how to leverage various architectures for integration. The book includes a wide range of use cases that will help data managers visualize reference architectures in the context of specific industries (healthcare, big oil, transportation, software, etc.). Explores various ways to leverage Big Data by effectively integrating it into the data warehouse Includes real-world case studies which clearly demonstrate Big Data technologies Provides insights on how to optimize current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements

Data Lake Analytics

Data Lake Analytics Book
Author : Anonim
Publisher : Unknown
Release : 2019
ISBN : 9781509307623
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Data Lake Analytics book written by , available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Big Data Architect s Handbook

Big Data Architect   s Handbook Book
Author : Syed Muhammad Fahad Akhtar
Publisher : Packt Publishing Ltd
Release : 2018-06-21
ISBN : 1788836383
Language : En, Es, Fr & De

GET BOOK

Book Description :

A comprehensive end-to-end guide that gives hands-on practice in big data and Artificial Intelligence Key Features Learn to build and run a big data application with sample code Explore examples to implement activities that a big data architect performs Use Machine Learning and AI for structured and unstructured data Book Description The big data architects are the “masters” of data, and hold high value in today’s market. Handling big data, be it of good or bad quality, is not an easy task. The prime job for any big data architect is to build an end-to-end big data solution that integrates data from different sources and analyzes it to find useful, hidden insights. Big Data Architect’s Handbook takes you through developing a complete, end-to-end big data pipeline, which will lay the foundation for you and provide the necessary knowledge required to be an architect in big data. Right from understanding the design considerations to implementing a solid, efficient, and scalable data pipeline, this book walks you through all the essential aspects of big data. It also gives you an overview of how you can leverage the power of various big data tools such as Apache Hadoop and ElasticSearch in order to bring them together and build an efficient big data solution. By the end of this book, you will be able to build your own design system which integrates, maintains, visualizes, and monitors your data. In addition, you will have a smooth design flow in each process, putting insights in action. What you will learn Learn Hadoop Ecosystem and Apache projects Understand, compare NoSQL database and essential software architecture Cloud infrastructure design considerations for big data Explore application scenario of big data tools for daily activities Learn to analyze and visualize results to uncover valuable insights Build and run a big data application with sample code from end to end Apply Machine Learning and AI to perform big data intelligence Practice the daily activities performed by big data architects Who this book is for Big Data Architect’s Handbook is for you if you are an aspiring data professional, developer, or IT enthusiast who aims to be an all-round architect in big data. This book is your one-stop solution to enhance your knowledge and carry out easy to complex activities required to become a big data architect.

Data Lake Development with Big Data

Data Lake Development with Big Data Book
Author : Pradeep Pasupuleti,Beulah Salome Purra
Publisher : Packt Publishing Ltd
Release : 2015-11-26
ISBN : 1785881663
Language : En, Es, Fr & De

GET BOOK

Book Description :

Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies About This Book Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability Packed with industry best practices and use-case scenarios to get you up-and-running Who This Book Is For This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management and information lifecycle management, and experience of Big Data technologies. What You Will Learn Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios Find out the key considerations to be taken into account while building each tier of the Data Lake Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies Enable data discovery on the Data Lake to allow users to discover the data Discover how data is packaged and provisioned for consumption Comprehend the importance of including data governance disciplines while building a Data Lake In Detail A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications. This book will guide readers (using best practices) in developing Data Lake's capabilities. It will focus on architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. Style and approach Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.

Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast

Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast Book
Author : Federico Divina,Francisco A. Gómez Vela ,Miguel García-Torres
Publisher : MDPI
Release : 2021-08-30
ISBN : 3036508627
Language : En, Es, Fr & De

GET BOOK

Book Description :

The use of data collectors in energy systems is growing more and more. For example, smart sensors are now widely used in energy production and energy consumption systems. This implies that huge amounts of data are generated and need to be analyzed in order to extract useful insights from them. Such big data give rise to a number of opportunities and challenges for informed decision making. In recent years, researchers have been working very actively in order to come up with effective and powerful techniques in order to deal with the huge amount of data available. Such approaches can be used in the context of energy production and consumption considering the amount of data produced by all samples and measurements, as well as including many additional features. With them, automated machine learning methods for extracting relevant patterns, high-performance computing, or data visualization are being successfully applied to energy demand forecasting.

Software Architecture for Big Data and the Cloud

Software Architecture for Big Data and the Cloud Book
Author : Ivan Mistrik,Rami Bahsoon,Nour Ali,Maritta Heisel,Bruce Maxim
Publisher : Morgan Kaufmann
Release : 2017-06-12
ISBN : 0128093382
Language : En, Es, Fr & De

GET BOOK

Book Description :

Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques Presents case studies involving enterprise, business, and government service deployment of big data applications Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data

Big Data Analytics with Spark and Hadoop

Big Data Analytics with Spark and Hadoop Book
Author : Venkat Ankam
Publisher : Unknown
Release : 2016-08-26
ISBN : 9781785884696
Language : En, Es, Fr & De

GET BOOK

Book Description :

A handy reference guide for data analysts and data scientists to fetch "Value" out of big data analytics using Spark on Hadoop ClustersAbout This Book* Practical tutorial with real-world examples that explores Spark on Hadoop clusters* This book is based on the latest version of Apache Spark and Hadoop integrated with the most commonly used tools* Learn about all the Spark stack components including the latest topics such as DataFrames, DataSets, and SparkRWho This Book Is ForThough this book is primarily aimed at data analysts and data scientists, it will also help architects, programmers, and practitioners. Knowledge of either Spark or Hadoop would be beneficial. It is assumed that you have basic programming background in Scala, Python, SQL, or R programming with basic Linux experience. Working experience within big data environments is not mandatory.What You Will Learn* Find out about and implement the tools and techniques of big data analytics using Spark on Hadoop clusters* Understand all the Hadoop and Spark ecosystem components and how Spark replaced MapReduce* Get to know all the Spark components: Spark Core, Spark SQL, DataFrames, DataSets, Streaming, MLLib, and Graphx* See batch and real-time data analytics using Spark Core, Spark SQL, and Spark Streaming* Get to grips with data science and machine learning using MLLib, H2O, Hivemall, Graphx, and SparkR* Get an introduction to all the new tools (based on Notebooks, Data Flow, and Spark as a Service) and their integrations with Spark and HadoopIn DetailThis book explains the fundamentals of Apache Spark and Hadoop, and how they are easily integrated together with the most commonly used tools and techniques. All the Spark components-Spark Core, Spark SQL, DataFrames, Data sets, Streaming, MLlib, Graphx, and Hadoop core components-HDFS, MapReduce, and Yarn are explored in greater depth with implementation examples on Spark and Hadoop clusters.The big data analytics industry is moving away from MapReduce to Spark. In this book, the advantages of Spark over MapReduce are explained at great depth so you can reap the benefits of in-memory speeds. The DataFrames API, Data Sources API, and new Data sets API are explained so you can build big data analytical applications.We'll explore real-time data analytics using Spark Streaming with Apache Kafka and HBase to help you build streaming applications. You'll get to know the machine learning techniques using MLLib and SparkR, and Graph Analytics with the GraphX component of Spark.You will also get the opportunity to start working with web-based notebooks such as Jupyter, Apache Zeppelin, and the data flow tool Apache NiFi to analyze and visualize data.

Architecting Modern Data Platforms

Architecting Modern Data Platforms Book
Author : Jan Kunigk,Ian Buss,Paul Wilkinson,Lars George
Publisher : O'Reilly Media
Release : 2018-12-05
ISBN : 1491969245
Language : En, Es, Fr & De

GET BOOK

Book Description :

There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability

Big Data Bootcamp

Big Data Bootcamp Book
Author : David Feinleib
Publisher : Apress
Release : 2014-09-26
ISBN : 1484200403
Language : En, Es, Fr & De

GET BOOK

Book Description :

Investors and technology gurus have called big data one of the most important trends to come along in decades. Big Data Bootcamp explains what big data is and how you can use it in your company to become one of tomorrow’s market leaders. Along the way, it explains the very latest technologies, companies, and advancements. Big data holds the keys to delivering better customer service, offering more attractive products, and unlocking innovation. That’s why, to remain competitive, every organization should become a big data company. It’s also why every manager and technology professional should become knowledgeable about big data and how it is transforming not just their own industries but the global economy. And that knowledge is just what this book delivers. It explains components of big data like Hadoop and NoSQL databases; how big data is compiled, queried, and analyzed; how to create a big data application; and the business sectors ripe for big data-inspired products and services like retail, healthcare, finance, and education. Best of all, your guide is David Feinleib, renowned entrepreneur, venture capitalist, and author of Why Startups Fail. Feinleib’s Big Data Landscape, a market map featured and explained in the book, is an industry benchmark that has been viewed more than 150,000 times and is used as a reference by VMWare, Dell, Intel, the U.S. Government Accountability Office, and many other organizations. Feinleib also explains: • Why every businessperson needs to understand the fundamentals of big data or get run over by those who do • How big data differs from traditional database management systems • How to create and run a big data project • The technical details powering the big data revolution Whether you’re a Fortune 500 executive or the proprietor of a restaurant or web design studio, Big Data Bootcamp will explain how you can take full advantage of new technologies to transform your company and your career.

Big Data Management Technologies and Applications

Big Data Management  Technologies  and Applications Book
Author : Hu, Wen-Chen
Publisher : IGI Global
Release : 2013-10-31
ISBN : 1466647000
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book discusses the exponential growth of information size and the innovative methods for data capture, storage, sharing, and analysis for big data"--Provided by publisher.

Learning Path

Learning Path Book
Author : Marie Beaugureau
Publisher : Unknown
Release : 2015
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

With datasets growing increasingly large, the need for custom data solutions has soared as well. This Learning Path will take you through the entire process of designing and building data applications that can visualize, navigate, and interpret reams of data. Get a thorough introduction to the most important tools in the big data ecosystem.

Big Data Revolution

Big Data Revolution Book
Author : Rob Thomas,Patrick McSharry
Publisher : John Wiley & Sons
Release : 2015-01-05
ISBN : 1118943732
Language : En, Es, Fr & De

GET BOOK

Book Description :

Exploit the power and potential of Big Data to revolutionizebusiness outcomes Big Data Revolution is a guide to improving performance,making better decisions, and transforming business through theeffective use of Big Data. In this collaborative work by an IBMVice President of Big Data Products and an Oxford Research Fellow,this book presents inside stories that demonstrate the power andpotential of Big Data within the business realm. Readers are guidedthrough tried-and-true methodologies for getting more out of data,and using it to the utmost advantage. This book describes the majortrends emerging in the field, the pitfalls and triumphs beingexperienced, and the many considerations surrounding Big Data, allwhile guiding readers toward better decision making from theperspective of a data scientist. Companies are generating data faster than ever before, andmanaging that data has become a major challenge. With the rightstrategy, Big Data can be a powerful tool for creating effectivebusiness solutions – but deep understanding is key whenapplying it to individual business needs. Big DataRevolution provides the insight executives need to incorporateBig Data into a better business strategy, improving outcomes withinnovation and efficient use of technology. Examine the major emerging patterns in Big Data Consider the debate surrounding the ethical use of data Recognize patterns and improve personal and organizationalperformance Make more informed decisions with quantifiable results In an information society, it is becoming increasingly importantto make sense of data in an economically viable way. It can drivenew revenue streams and give companies a competitive advantage,providing a way forward for businesses navigating an increasinglycomplex marketplace. Big Data Revolution provides expertinsight on the tool that can revolutionize industries.

Big Data Analytics

Big Data Analytics Book
Author : Frank J. Ohlhorst
Publisher : John Wiley & Sons
Release : 2012-11-15
ISBN : 1118239040
Language : En, Es, Fr & De

GET BOOK

Book Description :

Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.

Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment

Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment Book
Author : Jean-Michel Bruel,Manuel Mazzara,Bertrand Meyer
Publisher : Springer Nature
Release : 2020-01-18
ISBN : 3030393062
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book constitutes revised selected papers of the Second International Workshop on Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment, DEVOPS 2019, held at the Château de Villebrumier, France, in May 2019. The 15 papers presented in this volume were carefully reviewed and selected from 19 submissions. They cover a wide range of problems arising from DevOps and related approaches: current tools, rapid development-deployment processes, modeling frameworks, anomaly detection in software releases, DevDataOps, microservices, and related topics.

Big Data Application in Power Systems

Big Data Application in Power Systems Book
Author : Reza Arghandeh,Yuxun Zhou
Publisher : Elsevier
Release : 2017-11-27
ISBN : 0128119691
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. Provides expert analysis of the latest developments by global authorities Contains detailed references for further reading and extended research Provides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformatics Focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data

Cloud Computing and Big Data Technologies Applications and Security

Cloud Computing and Big Data  Technologies  Applications and Security Book
Author : Mostapha Zbakh,Mohammed Essaaidi,Pierre Manneback,Chunming Rong
Publisher : Springer
Release : 2018-07-28
ISBN : 9783319977188
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book addresses topics related to cloud and Big Data technologies, architecture and applications including distributed computing and data centers, cloud infrastructure and security, and end-user services. The majority of the book is devoted to the security aspects of cloud computing and Big Data. Cloud computing, which can be seen as any subscription-based or pay-per-use service that extends the Internet’s existing capabilities, has gained considerable attention from both academia and the IT industry as a new infrastructure requiring smaller investments in hardware platforms, staff training, or licensing software tools. It is a new paradigm that has ushered in a revolution in both data storage and computation. In parallel to this progress, Big Data technologies, which rely heavily on cloud computing platforms for both data storage and processing, have been developed and deployed at breathtaking speed. They are among the most frequently used technologies for developing applications and services in many fields, such as the web, health, and energy. Accordingly, cloud computing and Big Data technologies are two of the most central current and future research mainstreams. They involve and impact a host of fields, including business, scientific research, and public and private administration. Gathering extended versions of the best papers presented at the Third International Conference on Cloud Computing Technologies and Applications (CloudTech’17), this book offers a valuable resource for all Information System managers, researchers, students, developers, and policymakers involved in the technological and application aspects of cloud computing and Big Data.

Research Anthology on Big Data Analytics Architectures and Applications

Research Anthology on Big Data Analytics  Architectures  and Applications Book
Author : Management Association, Information Resources
Publisher : IGI Global
Release : 2021-09-24
ISBN : 1668436639
Language : En, Es, Fr & De

GET BOOK

Book Description :

Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.

Building Data Streaming Applications with Apache Kafka

Building Data Streaming Applications with Apache Kafka Book
Author : Manish Kumar,Chanchal Singh
Publisher : Packt Publishing Ltd
Release : 2017-08-18
ISBN : 1787287637
Language : En, Es, Fr & De

GET BOOK

Book Description :

Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples

Big Data Application Architecture Q A

Big Data Application Architecture Q A Book
Author : Nitin Sawant,Himanshu Shah
Publisher : Apress
Release : 2014-01-24
ISBN : 1430262931
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data Application Architecture Pattern Recipes provides an insight into heterogeneous infrastructures, databases, and visualization and analytics tools used for realizing the architectures of big data solutions. Its problem-solution approach helps in selecting the right architecture to solve the problem at hand. In the process of reading through these problems, you will learn harness the power of new big data opportunities which various enterprises use to attain real-time profits. Big Data Application Architecture Pattern Recipes answers one of the most critical questions of this time 'how do you select the best end-to-end architecture to solve your big data problem?'. The book deals with various mission critical problems encountered by solution architects, consultants, and software architects while dealing with the myriad options available for implementing a typical solution, trying to extract insight from huge volumes of data in real–time and across multiple relational and non-relational data types for clients from industries like retail, telecommunication, banking, and insurance. The patterns in this book provide the strong architectural foundation required to launch your next big data application. The architectures for realizing these opportunities are based on relatively less expensive and heterogeneous infrastructures compared to the traditional monolithic and hugely expensive options that exist currently. This book describes and evaluates the benefits of heterogeneity which brings with it multiple options of solving the same problem, evaluation of trade-offs and validation of 'fitness-for-purpose' of the solution.

Signal Processing and Networking for Big Data Applications

Signal Processing and Networking for Big Data Applications Book
Author : Zhu Han,Mingyi Hong,Dan Wang
Publisher : Cambridge University Press
Release : 2017-04-27
ISBN : 1108155944
Language : En, Es, Fr & De

GET BOOK

Book Description :

This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics.