Skip to main content

Big Data

In Order to Read Online or Download Big Data Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Big data

Big data Book
Author : Anne Vegter
Publisher : Unknown
Release : 2019
ISBN : 9789021417257
Language : En, Es, Fr & De

GET BOOK

Book Description :

Baby?s en biggen, lange lijnen en open ruimtes: deze nieuwe bundel van de voormalig Dichter des Vaderlands bevat big data! Een explosieve verzameling nullen en enen die het verhaal vertelt van pijn en woede, maar in een vorm die chaos verheldert en uitzichten biedt ? "ik zeg het niet graag, maar de zee is eerlijk".0Vegters poëzie wikt, weegt en mikt. Persoonlijke gedichten worden geplaatst tegenover een lange tekst over de Europese reis van de Zuid-Afrikaanse Ingrid Jonker. Taal verbindt het energieke met het angstige, het speelse met het pijnlijk snijdende.

Big Data in Practice

Big Data in Practice Book
Author : Bernard Marr
Publisher : John Wiley & Sons
Release : 2016-05-02
ISBN : 1119231388
Language : En, Es, Fr & De

GET BOOK

Book Description :

The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter

Big Data at Work

Big Data at Work Book
Author : Thomas Davenport
Publisher : Harvard Business Review Press
Release : 2014-02-25
ISBN : 1422168166
Language : En, Es, Fr & De

GET BOOK

Book Description :

Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Big Data Data Mining and Machine Learning

Big Data  Data Mining  and Machine Learning Book
Author : Jared Dean
Publisher : John Wiley & Sons
Release : 2014-05-27
ISBN : 1118618041
Language : En, Es, Fr & De

GET BOOK

Book Description :

With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.

People Analytics in the Era of Big Data

People Analytics in the Era of Big Data Book
Author : Jean Paul Isson,Jesse S. Harriott
Publisher : John Wiley & Sons
Release : 2016-04-25
ISBN : 1119050782
Language : En, Es, Fr & De

GET BOOK

Book Description :

Apply predictive analytics throughout all stages of workforce management People Analytics in the Era of Big Data provides a blueprint for leveraging your talent pool through the use of data analytics. Written by the Global Vice President of Business Intelligence and Predictive Analytics at Monster Worldwide, this book is packed full of actionable insights to help you source, recruit, acquire, engage, retain, promote, and manage the exceptional talent your organization needs. With a unique approach that applies analytics to every stage of the hiring process and the entire workforce planning and management cycle, this informative guide provides the key perspective that brings analytics into HR in a truly useful way. You're already inundated with disparate employee data, so why not mine that data for insights that add value to your organization and strengthen your workforce? This book presents a practical framework for real-world talent analytics, backed by groundbreaking examples of workforce analytics in action across the U.S., Canada, Europe, Asia, and Australia. Leverage predictive analytics throughout the hiring process Utilize analytics techniques for more effective workforce management Learn how people analytics benefits organizations of all sizes in various industries Integrate analytics into HR practices seamlessly and thoroughly Corporate executives need fact-based insights into what will happen with their talent. Who should you hire? Who should you promote? Who are the top or bottom performers, and why? Who is at risk to quit, and why? Analytics can provide these answers, and give you insights based on quantifiable data instead of gut feeling and subjective assessment. People Analytics in the Era of Big Data is the essential guide to optimizing your workforce with the tools already at your disposal.

Big Data a Very Short Introduction

Big Data  a Very Short Introduction Book
Author : Dawn E. Holmes
Publisher : Oxford University Press
Release : 2017-10-23
ISBN : 0198779577
Language : En, Es, Fr & De

GET BOOK

Book Description :

Since long before computers were even thought of, data has been collected and organized by diverse cultures across the world. Once access to the Internet became a reality for large swathes of the world's population, the amount of data generated each day became huge, and continues to grow exponentially. It includes all our uploaded documents, video, and photos, all our social media traffic, our online shopping, even the GPS data from our cars. "Big Data" represents a qualitative change, not simply a quantitative one. The term refers both to the new technologies involved, and to the way it can be used by business and government. Dawn E. Holmes uses a variety of case studies to explain how data is stored, analyzed, and exploited by a variety of bodies from big companies to organizations concerned with disease control. Big data is transforming the way businesses operate, and the way medical research can be carried out. At the same time, it raises important ethical issues; Holmes discusses cases such as the Snowden affair, data security, and domestic smart devices which can be hijacked by hackers. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Scalable Big Data Architecture

Scalable Big Data Architecture Book
Author : Bahaaldine Azarmi
Publisher : Apress
Release : 2015-12-31
ISBN : 1484213262
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.

Data Analytics and Big Data

Data Analytics and Big Data Book
Author : Soraya Sedkaoui
Publisher : John Wiley & Sons
Release : 2018-05-24
ISBN : 1119528054
Language : En, Es, Fr & De

GET BOOK

Book Description :

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.

Big Data Analytics in Cybersecurity

Big Data Analytics in Cybersecurity Book
Author : Onur Savas,Julia Deng
Publisher : CRC Press
Release : 2017-09-18
ISBN : 1351650416
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.

Big Data Business Guide

Big Data Business Guide Book
Author : Arzu Barské - Erdogan
Publisher : Lulu.com
Release : 2021-10-18
ISBN : 1312078855
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Big Data Business Guide book written by Arzu Barské - Erdogan, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Big Data Imperatives

Big Data Imperatives Book
Author : Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa
Publisher : Apress
Release : 2013-08-23
ISBN : 1430248734
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.

Large Scale and Big Data

Large Scale and Big Data Book
Author : Sherif Sakr,Mohamed Gaber
Publisher : CRC Press
Release : 2014-06-25
ISBN : 1466581506
Language : En, Es, Fr & De

GET BOOK

Book Description :

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Big Data

Big Data Book
Author : Nathan Marz,James Warren
Publisher : Manning Publications Company
Release : 2015
ISBN : 9781617290343
Language : En, Es, Fr & De

GET BOOK

Book Description :

Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Statistics for Big Data For Dummies

Statistics for Big Data For Dummies Book
Author : Alan Anderson
Publisher : John Wiley & Sons
Release : 2015-08-31
ISBN : 1118940016
Language : En, Es, Fr & De

GET BOOK

Book Description :

The fast and easy way to make sense of statistics for big data Does the subject of data analysis make you dizzy? You've come to the right place! Statistics For Big Data For Dummies breaks this often-overwhelming subject down into easily digestible parts, offering new and aspiring data analysts the foundation they need to be successful in the field. Inside, you'll find an easy-to-follow introduction to exploratory data analysis, the lowdown on collecting, cleaning, and organizing data, everything you need to know about interpreting data using common software and programming languages, plain-English explanations of how to make sense of data in the real world, and much more. Data has never been easier to come by, and the tools students and professionals need to enter the world of big data are based on applied statistics. While the word "statistics" alone can evoke feelings of anxiety in even the most confident student or professional, it doesn't have to. Written in the familiar and friendly tone that has defined the For Dummies brand for more than twenty years, Statistics For Big Data For Dummies takes the intimidation out of the subject, offering clear explanations and tons of step-by-step instruction to help you make sense of data mining—without losing your cool. Helps you to identify valid, useful, and understandable patterns in data Provides guidance on extracting previously unknown information from large databases Shows you how to discover patterns available in big data Gives you access to the latest tools and techniques for working in big data If you're a student enrolled in a related Applied Statistics course or a professional looking to expand your skillset, Statistics For Big Data For Dummies gives you access to everything you need to succeed.

Big Data Management

Big Data Management Book
Author : Peter Ghavami
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2020-11-09
ISBN : 3110664321
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.

Big Data

Big Data Book
Author : Balamurugan Balusamy,Nandhini Abirami R,Seifedine Kadry,Amir H. Gandomi
Publisher : John Wiley & Sons
Release : 2021-03-15
ISBN : 1119701872
Language : En, Es, Fr & De

GET BOOK

Book Description :

Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.

Big Data

Big Data Book
Author : Saswat Sarangi,Pankaj Sharma
Publisher : Taylor & Francis
Release : 2019-09-09
ISBN : 1000650979
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data is everywhere. It shapes our lives in more ways than we know and understand. This comprehensive introduction unravels the complex terabytes that will continue to shape our lives in ways imagined and unimagined. Drawing on case studies like Amazon, Facebook, the FIFA World Cup and the Aadhaar scheme, this book looks at how Big Data is changing the way we behave, consume and respond to situations in the digital age. It looks at how Big Data has the potential to transform disaster management and healthcare, as well as prove to be authoritarian and exploitative in the wrong hands. The latest offering from the authors of Artificial Intelligence: Evolution, Ethics and Public Policy, this accessibly written volume is essential for the researcher in science and technology studies, media and culture studies, public policy and digital humanities, as well as being a beacon for the general reader to make sense of the digital age.

Big Data

Big Data Book
Author : Wolfgang Pietsch
Publisher : Cambridge University Press
Release : 2021-01-31
ISBN : 110860448X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data and methods for analyzing large data sets such as machine learning have in recent times deeply transformed scientific practice in many fields. However, an epistemological study of these novel tools is still largely lacking. After a conceptual analysis of the notion of data and a brief introduction into the methodological dichotomy between inductivism and hypothetico-deductivism, several controversial theses regarding big data approaches are discussed. These include, whether correlation replaces causation, whether the end of theory is in sight and whether big data approaches constitute entirely novel scientific methodology. In this Element, I defend an inductivist view of big data research and argue that the type of induction employed by the most successful big data algorithms is variational induction in the tradition of Mill's methods. Based on this insight, the before-mentioned epistemological issues can be systematically addressed.

Big Data Computing

Big Data Computing Book
Author : Vivek Kale
Publisher : CRC Press
Release : 2016-11-25
ISBN : 1498715346
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book unravels the mystery of Big Data computing and its power to transform business operations. The approach it uses will be helpful to any professional who must present a case for realizing Big Data computing solutions or to those who could be involved in a Big Data computing project. It provides a framework that enables business and technical managers to make optimal decisions necessary for the successful migration to Big Data computing environments and applications within their organizations.

Big Data Technologies and Applications

Big Data Technologies and Applications Book
Author : Borko Furht,Flavio Villanustre
Publisher : Springer
Release : 2016-09-16
ISBN : 3319445502
Language : En, Es, Fr & De

GET BOOK

Book Description :

The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.