Skip to main content

Artificial Intelligence And Machine Learning In Healthcare

In Order to Read Online or Download Artificial Intelligence And Machine Learning In Healthcare Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Artificial Intelligence and Machine Learning in Healthcare

Artificial Intelligence and Machine Learning in Healthcare Book
Author : Ankur Saxena,Shivani Chandra
Publisher : Springer Nature
Release : 2021-05-06
ISBN : 9811608113
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.

Handbook of Artificial Intelligence in Healthcare

Handbook of Artificial Intelligence in Healthcare Book
Author : Chee-Peng Lim
Publisher : Springer Nature
Release : 2022-06-26
ISBN : 3030836207
Language : En, Es, Fr & De

GET BOOK

Book Description :

Download Handbook of Artificial Intelligence in Healthcare book written by Chee-Peng Lim, available in PDF, EPUB, and Kindle, or read full book online anywhere and anytime. Compatible with any devices.

Artificial Intelligence and Machine Learning in Public Healthcare

Artificial Intelligence and Machine Learning in Public Healthcare Book
Author : KC Santosh,Loveleen Gaur
Publisher : Springer Nature
Release : 2022-01-01
ISBN : 9811667683
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book discusses and evaluates AI and machine learning (ML) algorithms in dealing with challenges that are primarily related to public health. It also helps find ways in which we can measure possible consequences and societal impacts by taking the following factors into account: open public health issues and common AI solutions (with multiple case studies, such as TB and SARS: COVID-19), AI in sustainable health care, AI in precision medicine and data privacy issues. Public health requires special attention as it drives economy and education system. COVID-19 is an example—a truly infectious disease outbreak. The vision of WHO is to create public health services that can deal with abovementioned crucial challenges by focusing on the following elements: health protection, disease prevention and health promotion. For these issues, in the big data analytics era, AI and ML tools/techniques have potential to improve public health (e.g., existing healthcare solutions and wellness services). In other words, they have proved to be valuable tools not only to analyze/diagnose pathology but also to accelerate decision-making procedure especially when we consider resource-constrained regions.

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare Book
Author : Arjun Panesar
Publisher : Apress
Release : 2019-02-04
ISBN : 1484237994
Language : En, Es, Fr & De

GET BOOK

Book Description :

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Applications of Artificial Intelligence and Machine Learning in Healthcare

Applications of Artificial Intelligence and Machine Learning in Healthcare Book
Author : Hassan Alamoudi
Publisher : Unknown
Release : 2019
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Intelligence (AI) is becoming a ubiquitous term that is used in many fields of research or the popular culture. Among these fields that was affected by this hype is the healthcare sector. Along with its subdomain, Machine Learning (ML), they established an environment of interest in the promises of machines versus humans capabilities. Though artificial intelligence applications in healthcare such as interpreting ECGs could date back to the mid of the twentieth century, the promises of AI still at its beginning when it comes to new breakthroughs. This is due to the transformation into a digital world and new advancements in the processing capabilities. Computer vision has contributed the most to the healthcare sector where it can leverage doctors and practitioners with automated classification and annotations as a preparing step. This kind of mechanism is the best suited for applications of AI in healthcare. However, the amount of data in other forms such as textual or lab results is exceeding the force power. While a solution could be to use machines to learn and propose solutions, the results could be catastrophic and human lives are on stake. So, explainable AI could be beneficial where it analyzes and makes predictions that can be trusted by the users. The study here is conducted on cardiovascular patients dataset to predict the presence or absence of the disease. Classifications techniques used include Nave Bayes, Logistic Regression, Decision Trees, Support Vector Machines, and Artificial Neural Networks. The Logistic regression model achieved the best Area under the curve. Moreover, an extension of the previous studies discussed is conducted to explain the model and to show how models of AI can be trusted and not used as black-boxes.

Artificial Intelligence in Healthcare and Medicine

Artificial Intelligence in Healthcare and Medicine Book
Author : Kayvan Najarian,Delaram Kahrobaei,Enrique Dominguez,Reza Soroushmehr
Publisher : CRC Press
Release : 2022-04-06
ISBN : 1000565815
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides a comprehensive overview of the recent developments in clinical decision support systems, precision health, and data science in medicine. The book targets clinical researchers and computational scientists seeking to understand the recent advances of artificial intelligence (AI) in health and medicine. Since AI and its applications are believed to have the potential to revolutionize healthcare and medicine, there is a clear need to explore and investigate the state-of-the-art advancements in the field. This book provides a detailed description of the advancements, challenges, and opportunities of using AI in medical and health applications. Over 10 case studies are included in the book that cover topics related to biomedical image processing, machine learning for healthcare, clinical decision support systems, visualization of high dimensional data, data security and privacy, bioinformatics, and biometrics. The book is intended for clinical researchers and computational scientists seeking to understand the recent advances of AI in health and medicine. Many universities may use the book as a secondary training text. Companies in the healthcare sector can greatly benefit from the case studies covered in the book. Moreover, this book also: Provides an overview of the recent developments in clinical decision support systems, precision health, and data science in medicine Examines the advancements, challenges, and opportunities of using AI in medical and health applications Includes 10 cases for practical application and reference Kayvan Najarian is a Professor in the Department of Computational Medicine and Bioinformatics, Department of Electrical Engineering and Computer Science, and Department of Emergency Medicine at the University of Michigan, Ann Arbor. Delaram Kahrobaei is the University Dean for Research at City University of New York (CUNY), a Professor of Computer Science and Mathematics, Queens College CUNY, and the former Chair of Cyber Security, University of York. Enrique Domínguez is a professor in the Department of Computer Science at the University of Malaga and a member of the Biomedical Research Institute of Malaga. Reza Soroushmehr is a Research Assistant Professor in the Department of Computational Medicine and Bioinformatics and a member of the Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare Book
Author : Adam Bohr,Kaveh Memarzadeh
Publisher : Academic Press
Release : 2020-07-10
ISBN : 0128184388
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Demystifying Big Data and Machine Learning for Healthcare

Demystifying Big Data and Machine Learning for Healthcare Book
Author : Prashant Natarajan,John C. Frenzel,Detlev H. Smaltz
Publisher : CRC Press
Release : 2017-02-15
ISBN : 1315389312
Language : En, Es, Fr & De

GET BOOK

Book Description :

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Applied Machine Learning and Multi Criteria Decision Making in Healthcare

Applied Machine Learning and Multi Criteria Decision Making in Healthcare Book
Author : Ilker Ozsahin
Publisher : Bentham Science Publishers
Release : 2021-11-18
ISBN : 168108872X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides an ideal foundation for readers to understand the application of artificial intelligence (AI) and machine learning (ML) techniques to expert systems in the healthcare sector. It starts with an introduction to the topic and presents chapters which progressively explain decision-making theory that helps solve problems which have multiple criteria that can affect the outcome of a decision. Key aspects of the subject such as machine learning in healthcare, prediction techniques, mathematical models and classification of healthcare problems are included along with chapters which delve in to advanced topics on data science (deep-learning, artificial neural networks, etc.) and practical examples (influenza epidemiology and retinoblastoma treatment analysis). Key Features: - Introduces readers to the basics of AI and ML in expert systems for healthcare - Focuses on a problem solving approach to the topic - Provides information on relevant decision-making theory and data science used in the healthcare industry - Includes practical applications of AI and ML for advanced readers - Includes bibliographic references for further reading The reference is an accessible source of knowledge on multi-criteria decision-support systems in healthcare for medical consultants, healthcare policy makers, researchers in the field of medical biotechnology, oncology and pharmaceutical research and development.

Machine Learning in Healthcare

Machine Learning in Healthcare Book
Author : Bikesh Kumar Singh,G.R. Sinha
Publisher : CRC Press
Release : 2022-02-18
ISBN : 1000540405
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial intelligence (AI) and machine learning (ML) techniques play an important role in our daily lives by enhancing predictions and decision-making for the public in several fields such as financial services, real estate business, consumer goods, social media, etc. Despite several studies that have proved the efficacy of AI/ML tools in providing improved healthcare solutions, it has not gained the trust of health-care practitioners and medical scientists. This is due to poor reporting of the technology, variability in medical data, small datasets, and lack of standard guidelines for application of AI. Therefore, the development of new AI/ML tools for various domains of medicine is an ongoing field of research. Machine Learning in Healthcare: Fundamentals and Recent Applications discusses how to build various ML algorithms and how they can be applied to improve healthcare systems. Healthcare applications of AI are innumerable: medical data analysis, early detection and diagnosis of disease, providing objective-based evidence to reduce human errors, curtailing inter- and intra-observer errors, risk identification and interventions for healthcare management, real-time health monitoring, assisting clinicians and patients for selecting appropriate medications, and evaluating drug responses. Extensive demonstrations and discussion on the various principles of machine learning and its application in healthcare is provided, along with solved examples and exercises. This text is ideal for readers interested in machine learning without any background knowledge and looking to implement machine-learning models for healthcare systems.

Multiple Perspectives on Artificial Intelligence in Healthcare

Multiple Perspectives on Artificial Intelligence in Healthcare Book
Author : Mowafa Househ,Elizabeth Borycki,Andre Kushniruk
Publisher : Springer Nature
Release : 2021-08-05
ISBN : 3030673030
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book offers a comprehensive yet concise overview of the challenges and opportunities presented by the use of artificial intelligence in healthcare. It does so by approaching the topic from multiple perspectives, e.g. the nursing, consumer, medical practitioner, healthcare manager, and data analyst perspective. It covers human factors research, discusses patient safety issues, and addresses ethical challenges, as well as important policy issues. By reporting on cutting-edge research and hands-on experience, the book offers an insightful reference guide for health information technology professionals, healthcare managers, healthcare practitioners, and patients alike, aiding them in their decision-making processes. It will also benefit students and researchers whose work involves artificial intelligence-related research issues in healthcare.

Artificial Intelligence and Machine Learning in Business Management

Artificial Intelligence and Machine Learning in Business Management Book
Author : Sandeep Kumar Panda,Vaibhav Mishra,R. Balamurali,Ahmed A. Elngar
Publisher : CRC Press
Release : 2021-11-05
ISBN : 1000432114
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines.

Machine Learning and Deep Learning Techniques for Medical Science

Machine Learning and Deep Learning Techniques for Medical Science Book
Author : K. Gayathri Devi,Kishore Balasubramanian,Le Anh Ngoc
Publisher : CRC Press
Release : 2022-05-12
ISBN : 1000583368
Language : En, Es, Fr & De

GET BOOK

Book Description :

The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).

Machine Learning for Healthcare Applications

Machine Learning for Healthcare Applications Book
Author : Sachi Nandan Mohanty,G. Nalinipriya,Om Prakash Jena,Achyuth Sarkar
Publisher : John Wiley & Sons
Release : 2021-04-13
ISBN : 1119791812
Language : En, Es, Fr & De

GET BOOK

Book Description :

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Artificial Intelligence for Data Driven Medical Diagnosis

Artificial Intelligence for Data Driven Medical Diagnosis Book
Author : Deepak Gupta,Utku Kose,Bao Le Nguyen,Siddhartha Bhattacharyya
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2021-01-28
ISBN : 3110668386
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book collects research works of data-driven medical diagnosis done via Artificial Intelligence based solutions, such as Machine Learning, Deep Learning and Intelligent Optimization. Physical devices powered with Artificial Intelligence are gaining importance in diagnosis and healthcare. Medical data from different sources can also be analyzed via Artificial Intelligence techniques for more effective results.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare Book
Author : Parag Mahajan
Publisher : Medmantra, LLC
Release : 2021-02
ISBN : 9781954612020
Language : En, Es, Fr & De

GET BOOK

Book Description :

① Do you know what AI is doing to improve our health and wellbeing? ② Does this new technology concern you, or impress you? ③ Do you want to know more about the future of AI in healthcare? Technology continues to advance at a pace that can seem bewildering. Nowhere else is it moving faster than in the health sector, where ♥AI is now being used to improve millions of lives♥. In this book, ◆ Artificial Intelligence in Healthcare: AI, Machine Learning, and Deep and Intelligent Medicine Simplified for Everyone ◆, you can discover the great improvements that AI is making, with chapters covering: The current applications and future of AI in healthcare and all major medical specialties ✓ The benefits and risks weighed up ✓ The ethics involved ✓ Machine learning and data science simplified ✓ AI's role in medical research and education, health insurance, drug discovery, electronic health records, and the fight against COVID-19 ✓ The roles that major corporations and start-up companies are playing ✓ The implementation of AI in clinical practice ✓ And lots more... Quite simply the most authoritative text on the subject, Artificial Intelligence in Healthcare - 3rd Edition, is an absorbing and compelling read for anyone who wants to know more. It is packed with more updated information than any other book currently available, written in easy-to-understand language, and accessible to all.

Intelligent Healthcare

Intelligent Healthcare Book
Author : Surbhi Bhatia,Ashutosh Kumar Dubey,Rita Chhikara,Poonam Chaudhary,Abhishek Kumar
Publisher : Springer Nature
Release : 2021-07-02
ISBN : 3030670511
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book fosters a scientific debate for sophisticated approaches and cognitive technologies (such as deep learning, machine learning and advanced analytics) for enhanced healthcare services in light of the tremendous scope in the future of intelligent systems for healthcare. The authors discuss the proliferation of huge data sources (e.g. genomes, electronic health records (EHRs), mobile diagnostics, and wearable devices) and breakthroughs in artificial intelligence applications, which have unlocked the doors for diagnosing and treating multitudes of rare diseases. The contributors show how the widespread adoption of intelligent health based systems could help overcome challenges, such as shortages of staff and supplies, accessibility barriers, lack of awareness on certain health issues, identification of patient needs, and early detection and diagnosis of illnesses. This book is a small yet significant step towards exploring recent advances, disseminating state-of-the-art techniques and deploying novel technologies in intelligent healthcare services and applications. Describes the advances of computing methodologies for life and medical science data; Presents applications of artificial intelligence in healthcare along with case studies and datasets; Provides an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians.

Artificial Intelligence and Data Mining in Healthcare

Artificial Intelligence and Data Mining in Healthcare Book
Author : Malek Masmoudi,Bassem Jarboui,Patrick Siarry
Publisher : Springer Nature
Release : 2021
ISBN : 3030452409
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents recent work on healthcare management and engineering using artificial intelligence and data mining techniques. Specific topics covered in the contributed chapters include predictive mining, decision support, capacity management, patient flow optimization, image compression, data clustering, and feature selection. The content will be valuable for researchers and postgraduate students in computer science, information technology, industrial engineering, and applied mathematics.

Artificial Intelligence a Modern Approach

Artificial Intelligence a Modern Approach Book
Author : Chris Baker
Publisher : Unknown
Release : 2020-10-20
ISBN : 9781914063190
Language : En, Es, Fr & De

GET BOOK

Book Description :

Artificial intelligence is a word that carries with it heavy connotations. Although artificial intelligence is nothing more than the capacity for logic and understanding that machines can exhibit, in the minds of most people artificial intelligence is almost a Pandora's box that, when opened, will eventually signal the human race's doom.. The idea that machines pose an existential threat to human beings has been around for at least 60 years. It goes something like this: intelligent machines eventually realize the uselessness of human beings and turn against their creators. Or this: intelligent machines reduce human to cattle or even food after a dramatic war that human beings lose. Human beings have created countless languages and writing systems that have allowed us to expand collective human knowledge over a period of thousands of years. Much of the knowledge that we utilized today, knowledge about the math, science, and the stars, originates from observations made thousands of years ago but which were recorded by writing systems, allowing this knowledge to be preserved and passed down. Artificial intelligence has been used for many business, financial, medical, and other applications, and scientists and researchers are actively studying how these applications can be expanded to make human life simpler. The applications of AI will be explored in this book, both the real applications to business, finance, medicine, and health and the theoretical applications. Even the sensational, perhaps exaggerated applications of AI will be explored in the context of taking a look at how AI may potentially be applied in the future. The purpose of this discussion is for the reader to understand what AI is by understanding how it is used. Artificial intelligence is certainly a blessing at this point, but the reality that it may become a curse is not lost on some people. Understanding the full implications of AI requires a deep knowledge of what it is and where it came from. For companies and businesses to take advantage of AI-powered and improved interactions, the conversation has to begin inside the organization. Leaders are supposed to start with the available channels and improve their smartness. From that point, they are supposed to ask key questions about engagements with customers and employees. Here is a preview of what you will learn... Brief history of artificial intelligence The state of art of machine learning Artificial neural networks applied to machine learning How can we build an AI ready culture Our daily lives with AI And More.....

Artificial Intelligence AI and Machine Learning ML in Human Health and Healthcare

Artificial Intelligence  AI  and Machine Learning  ML  in Human Health and Healthcare Book
Author : Mahmudur Rahman
Publisher : Mdpi AG
Release : 2022-04
ISBN : 9783036537429
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book is a compilation of thirty research articles related to the current trends and techniques in medical informatics and healthcare with the application of Artificial Intelligence (AI) and Machine Learning (ML) to analyze both medical images and Electronic Health Records (EHR) in different domains to develop effective decision support systems as diagnostic aids and screening tools.