Skip to main content

Applications Of Big Data In Healthcare

In Order to Read Online or Download Applications Of Big Data In Healthcare Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

Applications of Big Data in Healthcare

Applications of Big Data in Healthcare Book
Author : Ashish Khanna,Deepak Gupta,Nilanjan Dey
Publisher : Academic Press
Release : 2021-03-10
ISBN : 0128204516
Language : En, Es, Fr & De

GET BOOK

Book Description :

Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery Supplies readers with a foundation for further specialized study in clinical analysis and data management Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book

Data Science for Healthcare

Data Science for Healthcare Book
Author : Sergio Consoli,Diego Reforgiato Recupero,Milan Petković
Publisher : Springer
Release : 2019-02-23
ISBN : 3030052494
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.

Medical Big Data and Internet of Medical Things

Medical Big Data and Internet of Medical Things Book
Author : Aboul Ella Hassanien,Nilanjan Dey,Surekha Borra
Publisher : CRC Press
Release : 2018-10-25
ISBN : 1351030361
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.

Big Data in Healthcare

Big Data in Healthcare Book
Author : Pouria Amirian,Trudie Lang,Francois van Loggerenberg
Publisher : Springer
Release : 2017-09-25
ISBN : 9783319629889
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book reviews a number of issues including: Why data generated from POC machines are considered as Big Data. What are the challenges in storing, managing, extracting knowledge from data from POC devices? Why is it inefficient to use traditional data analysis with big data? What are the solutions for the mentioned issues and challenges? What type of analytics skills are required in health care? What big data technologies and tools can be used efficiently with data generated from POC devices? This book shows how it is feasible to store vast numbers of anonymous data and ask highly specific questions that can be performed in real-time to give precise and meaningful evidence to guide public health policy.

Big Data Analytics in Healthcare

Big Data Analytics in Healthcare Book
Author : Anand J. Kulkarni,Patrick Siarry,Pramod Kumar Singh,Ajith Abraham,Mengjie Zhang,Albert Zomaya,Fazle Baki
Publisher : Springer Nature
Release : 2019-10-01
ISBN : 3030316726
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.

Big Data Analytics for Intelligent Healthcare Management

Big Data Analytics for Intelligent Healthcare Management Book
Author : Nilanjan Dey,Himansu Das,Bighnaraj Naik,H S Behera
Publisher : Academic Press
Release : 2019-04-15
ISBN : 0128181478
Language : En, Es, Fr & De

GET BOOK

Book Description :

Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more

Applications of Big Data in Large and Small Scale Systems

Applications of Big Data in Large  and Small Scale Systems Book
Author : Sam Goundar,Praveen Kumar Rayani
Publisher : IGI Global
Release : 2021
ISBN : 1799866750
Language : En, Es, Fr & De

GET BOOK

Book Description :

"This book addresses the newest innovative and intelligent applications related to utilizing the large amounts of big data being generated that is increasingly driving decision making and changing the landscape of business intelligence, from governments to private organizations, from communities to individuals"--

Big Data and Artificial Intelligence for Healthcare Applications

Big Data and Artificial Intelligence for Healthcare Applications Book
Author : Ankur Saxena,Nicolas Brault,Shazia Rashid
Publisher : CRC Press
Release : 2021-06-15
ISBN : 1000387313
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book covers a wide range of topics on the role of Artificial Intelligence, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. This book explores the applications in different areas of healthcare and highlights the current research. "Big Data and Artificial Intelligence for Healthcare Applications" covers healthcare big data analytics, mobile health and personalized medicine, clinical trial data management and presents how Artificial Intelligence can be used for early disease diagnosis prediction and prognosis. It also offers some case studies that describes the application of Artificial Intelligence and Machine Learning in healthcare. Researchers, healthcare professionals, data scientists, systems engineers, students, programmers, clinicians, and policymakers will find this book of interest.

Healthcare Data Analytics and Management

Healthcare Data Analytics and Management Book
Author : Nilanjan Dey,Amira S. Ashour,Simon James Fong,Chintan Bhatt
Publisher : Academic Press
Release : 2018-11-15
ISBN : 0128156368
Language : En, Es, Fr & De

GET BOOK

Book Description :

Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. Covers data analysis, management and security concepts and tools in the healthcare domain Highlights electronic medical health records and patient information records Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining Includes multidisciplinary contributions in relation to healthcare applications and challenges

Applications of Big Data Analytics

Applications of Big Data Analytics Book
Author : Mohammed M. Alani,Hissam Tawfik,Mohammed Saeed,Obinna Anya
Publisher : Springer
Release : 2018-07-23
ISBN : 3319764721
Language : En, Es, Fr & De

GET BOOK

Book Description :

This timely text/reference reviews the state of the art of big data analytics, with a particular focus on practical applications. An authoritative selection of leading international researchers present detailed analyses of existing trends for storing and analyzing big data, together with valuable insights into the challenges inherent in current approaches and systems. This is further supported by real-world examples drawn from a broad range of application areas, including healthcare, education, and disaster management. The text also covers, typically from an application-oriented perspective, advances in data science in such areas as big data collection, searching, analysis, and knowledge discovery. Topics and features: Discusses a model for data traffic aggregation in 5G cellular networks, and a novel scheme for resource allocation in 5G networks with network slicing Explores methods that use big data in the assessment of flood risks, and apply neural networks techniques to monitor the safety of nuclear power plants Describes a system which leverages big data analytics and the Internet of Things in the application of drones to aid victims in disaster scenarios Proposes a novel deep learning-based health data analytics application for sleep apnea detection, and a novel pathway for diagnostic models of headache disorders Reviews techniques for educational data mining and learning analytics, and introduces a scalable MapReduce graph partitioning approach for high degree vertices Presents a multivariate and dynamic data representation model for the visualization of healthcare data, and big data analytics methods for software reliability assessment This practically-focused volume is an invaluable resource for all researchers, academics, data scientists and business professionals involved in the planning, designing, and implementation of big data analytics projects. Dr. Mohammed M. Alani is an Associate Professor in Computer Engineering and currently is the Provost at Al Khawarizmi International College, Abu Dhabi, UAE. Dr. Hissam Tawfik is a Professor of Computer Science in the School of Computing, Creative Technologies & Engineering at Leeds Beckett University, UK. Dr. Mohammed Saeed is a Professor in Computing and currently is the Vice President for Academic Affairs and Research at the University of Modern Sciences, Dubai, UAE. Dr. Obinna Anya is a Research Staff Member at IBM Research – Almaden, San Jose, CA, USA.

Big Data Analytics

Big Data Analytics Book
Author : Saumyadipta Pyne,B.L.S. Prakasa Rao,S.B. Rao
Publisher : Springer
Release : 2016-10-12
ISBN : 8132236289
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Computational and Statistical Methods for Analysing Big Data with Applications

Computational and Statistical Methods for Analysing Big Data with Applications Book
Author : Shen Liu,James Mcgree,Zongyuan Ge,Yang Xie
Publisher : Academic Press
Release : 2015-11-20
ISBN : 0081006519
Language : En, Es, Fr & De

GET BOOK

Book Description :

Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. Advanced computational and statistical methodologies for analysing big data are developed Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable Case studies are discussed to demonstrate the implementation of the developed methods Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation Computing code/programs are provided where appropriate

Data Intensive Computing Applications for Big Data

Data Intensive Computing Applications for Big Data Book
Author : M. Mittal,V.E. Balas,D.J. Hemanth
Publisher : IOS Press
Release : 2018-01-31
ISBN : 1614998140
Language : En, Es, Fr & De

GET BOOK

Book Description :

The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.

Advanced Deep Learning Applications in Big Data Analytics

Advanced Deep Learning Applications in Big Data Analytics Book
Author : Bouarara, Hadj Ahmed
Publisher : IGI Global
Release : 2020-10-16
ISBN : 1799827933
Language : En, Es, Fr & De

GET BOOK

Book Description :

Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.

Health Data Privacy under the GDPR

Health Data Privacy under the GDPR Book
Author : Maria Tzanou
Publisher : Routledge
Release : 2020-11-24
ISBN : 0429663846
Language : En, Es, Fr & De

GET BOOK

Book Description :

The growth of data-collecting goods and services, such as ehealth and mhealth apps, smart watches, mobile fitness and dieting apps, electronic skin and ingestible tech, combined with recent technological developments such as increased capacity of data storage, artificial intelligence and smart algorithms, has spawned a big data revolution that has reshaped how we understand and approach health data. Recently the COVID-19 pandemic has foregrounded a variety of data privacy issues. The collection, storage, sharing and analysis of health- related data raises major legal and ethical questions relating to privacy, data protection, profiling, discrimination, surveillance, personal autonomy and dignity. This book examines health privacy questions in light of the General Data Protection Regulation (GDPR) and the general data privacy legal framework of the European Union (EU). The GDPR is a complex and evolving body of law that aims to deal with several technological and societal health data privacy problems, while safeguarding public health interests and addressing its internal gaps and uncertainties. The book answers a diverse range of questions including: What role can the GDPR play in regulating health surveillance and big (health) data analytics? Can it catch up with internet-age developments? Are the solutions to the challenges posed by big health data to be found in the law? Does the GDPR provide adequate tools and mechanisms to ensure public health objectives and the effective protection of privacy? How does the GDPR deal with data that concern children’s health and academic research? By analysing a number of diverse questions concerning big health data under the GDPR from various perspectives, this book will appeal to those interested in privacy, data protection, big data, health sciences, information technology, the GDPR, EU and human rights law.

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare Book
Author : Arjun Panesar
Publisher : Apress
Release : 2019-02-04
ISBN : 1484237994
Language : En, Es, Fr & De

GET BOOK

Book Description :

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll Learn Gain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Guide to Big Data Applications

Guide to Big Data Applications Book
Author : S. Srinivasan
Publisher : Springer
Release : 2017-05-25
ISBN : 3319538179
Language : En, Es, Fr & De

GET BOOK

Book Description :

This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.

Big Data in Engineering Applications

Big Data in Engineering Applications Book
Author : Sanjiban Sekhar Roy,Pijush Samui,Ravinesh Deo,Stavros Ntalampiras
Publisher : Springer
Release : 2018-05-02
ISBN : 9811084769
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents the current trends, technologies, and challenges in Big Data in the diversified field of engineering and sciences. It covers the applications of Big Data ranging from conventional fields of mechanical engineering, civil engineering to electronics, electrical, and computer science to areas in pharmaceutical and biological sciences. This book consists of contributions from various authors from all sectors of academia and industries, demonstrating the imperative application of Big Data for the decision-making process in sectors where the volume, variety, and velocity of information keep increasing. The book is a useful reference for graduate students, researchers and scientists interested in exploring the potential of Big Data in the application of engineering areas.

Managing Big Data Integration in the Public Sector

Managing Big Data Integration in the Public Sector Book
Author : Aggarwal, Anil
Publisher : IGI Global
Release : 2015-11-12
ISBN : 1466696508
Language : En, Es, Fr & De

GET BOOK

Book Description :

The era of rapidly progressing technology we live in generates vast amounts of data; however, the challenge exists in understanding how to aggressively monitor and make sense of this data. Without a better understanding of how to collect and manage such large data sets, it becomes increasingly difficult to successfully utilize them. Managing Big Data Integration in the Public Sector is a pivotal reference source for the latest scholarly research on the application of big data analytics in government contexts and identifies various strategies in which big data platforms can generate improvements within that sector. Highlighting issues surrounding data management, current models, and real-world applications, this book is ideally designed for professionals, government agencies, researchers, and non-profit organizations interested in the benefits of big data analytics applied in the public sphere.

Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare Book
Author : Kun Chang Lee,Sanjiban Sekhar Roy,Pijush Samui,Vijay Kumar
Publisher : Academic Press
Release : 2020-10-23
ISBN : 0128193158
Language : En, Es, Fr & De

GET BOOK

Book Description :

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks