
Publisher : Unknown
Release : 2017
ISBN : 0987650XXX
Language : En, Es, Fr & De
GET BOOK
Book Description :
Adult neurogenesis is crucial for some hippocampus-dependent memory functions. Both the demonstration of an alteration of neurogenesis in the brain of transgenic mouse models of Alzheimer's disease (AD), in parallel with a reduction in the mitochondrial content of their new neurons, open a new research avenue targeting the mitochondria. Today, the hypothesis of a causal role of mitochondrial dysfunctions in the etiology of neurodegenerative pathologies is particularly relevant in AD. Mitochondria, "power plants" and regulators of oxidative metabolism, form a dynamic network that adapts to different cell types and contexts, via antagonistic events of fusion and fission of their membranes. Key proteins have been identified, including OPA1 that allows fusion. Dysfunctions of this dynamics affect not only the shape and distribution of mitochondria in neurons, but also alter their main activities: respiration, calcium regulation, ROS production and apoptosis. In neurons, excitable cells with complex architecture, mitochondrial dysfunctions have particularly crucial consequences for synaptic transmission. In this thesis, we studied in parallel an AD mouse model, the Tg2576 mice (APP mutation) and the OPA1 +/- mice, carrying a mutation of OPA1, a Dominant Optic Atrophy model. In both mouse lines, we observed precocious performance alterations in behavioral tests involving the dentate gyrus and new neurons (object location, pattern separation tests). We demonstrated in Tg2576 and OPA1 +/- mice that these cognitive deficits are associated with disturbances of adult hippocampal neurogenesis. [...].