Skip to main content

2d Materials For Nanophotonics

In Order to Read Online or Download 2d Materials For Nanophotonics Full eBooks in PDF, EPUB, Tuebl and Mobi you need to create a Free account. Get any books you like and read everywhere you want. Fast Download Speed ~ Commercial & Ad Free. We cannot guarantee that every book is in the library!

2D Materials for Nanophotonics

2D Materials for Nanophotonics Book
Author : Young Min Jhon,Ju Han Lee
Publisher : Elsevier
Release : 2020-11-29
ISBN : 0128186593
Language : En, Es, Fr & De

GET BOOK

Book Description :

2D Materials for Nanophotonics presents a detailed overview of the applications of 2D materials for nanophotonics, covering the photonic properties of a range of 2D materials including graphene, 2D phosphorene and MXenes, and discussing applications in lighting and energy storage. This comprehensive reference is ideal for readers seeking a detailed and critical analysis of how 2D materials are being used for a range of photonic and optical applications. Outlines the major photonic properties in a variety of 2D materials Demonstrates major applications in lighting and energy storage Explores the challenges of using 2D materials in photonics

Two Dimensional Materials in Nanophotonics

Two Dimensional Materials in Nanophotonics Book
Author : Yuerui Lu
Publisher : CRC Press
Release : 2019-11-27
ISBN : 0429767994
Language : En, Es, Fr & De

GET BOOK

Book Description :

Two-dimensional (2D) materials have attracted tremendous interest since the study of graphene in the early 21st century. With their thickness in the angstrom-to-nanometer range, 2D materials, including graphene, transition metal dichalcogenides, phosphorene, silicene, and other inorganic and organic materials, can be an ideal platform to study fundamental many-body interactions because of reduced screening and can also be further engineered for nanophotonic applications. This book compiles research outcomes of leading groups in the field of 2D materials for nanophotonic physics and devices. It describes research advances of 2D materials for various nanophotonic applications, including ultrafast lasers, atomically thin optical lenses, and gratings to inelastically manipulate light propagation, their integrations with photonic nanostructures, and light–matter interactions. The book focuses on actual applications, while digging into the physics underneath. It targets advanced undergraduate- and graduate-level students of nanotechnology and researchers in nanotechnology, physics, and chemistry, especially those with an interest in 2D materials.

Two Dimensional Materials in Nanophotonics

Two Dimensional Materials in Nanophotonics Book
Author : Yuerui Lu
Publisher : CRC Press
Release : 2019-10-31
ISBN : 0429768001
Language : En, Es, Fr & De

GET BOOK

Book Description :

Two-dimensional (2D) materials have attracted tremendous interest since the study of graphene in the early 21st century. With their thickness in the angstrom-to-nanometer range, 2D materials, including graphene, transition metal dichalcogenides, phosphorene, silicene, and other inorganic and organic materials, can be an ideal platform to study fundamental many-body interactions because of reduced screening and can also be further engineered for nanophotonic applications. This book compiles research outcomes of leading groups in the field of 2D materials for nanophotonic physics and devices. It describes research advances of 2D materials for various nanophotonic applications, including ultrafast lasers, atomically thin optical lenses, and gratings to inelastically manipulate light propagation, their integrations with photonic nanostructures, and light–matter interactions. The book focuses on actual applications, while digging into the physics underneath. It targets advanced undergraduate- and graduate-level students of nanotechnology and researchers in nanotechnology, physics, and chemistry, especially those with an interest in 2D materials.

Printing of Graphene and Related 2D Materials

Printing of Graphene and Related 2D Materials Book
Author : Leonard W. T. Ng,Guohua Hu,Richard C. T. Howe,Xiaoxi Zhu,Zongyin Yang,Christopher G. Jones,Tawfique Hasan
Publisher : Springer
Release : 2018-07-24
ISBN : 331991572X
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book discusses the functional ink systems of graphene and related two-dimensional (2D) layered materials in the context of their formulation and potential for various applications, including in electronics, optoelectronics, energy, sensing, and composites using conventional graphics and 3D printing technologies. The authors explore the economic landscape of 2D materials and introduce readers to fundamental properties and production technologies. They also discuss major graphics printing technologies and conventional commercial printing processes that can be used for printing 2D material inks, as well as their specific strengths and weaknesses as manufacturing platforms. Special attention is also paid to scalable production methods for ink formulation, making this an ideal book for students and researchers in academia or industry, who work with functional graphene and other 2D material ink systems and their applications. Explains the state-of-the-art 2D material production technologies that can be manufactured at the industrial scale for functional ink formulation; Provides starting formulation examples of 2D material, functional inks for specific printing methods and their characterization techniques; Reviews existing demonstrations of applications related to printed 2D materials and provides possible future development directions while highlighting current knowledge gaps; Gives a snapshot and forecast of the commercial market for printed GRMs based on the current state of technologies and existing patents.

2D Materials and Nonlinear Quantum Optics

2D Materials and Nonlinear Quantum Optics Book
Author : Daniel Beom Soo Soh
Publisher : Unknown
Release : 2019
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

Nonlinear optics has long been studied as a basis for realizing fast information processing devices and sensors. Nonlinear photonic logic enables the elimination of slow electron-photon transduction processes and supports high signal bandwidth at optical carrier frequencies. Recent breakthroughs in material science have ushered in a new era of research on atomically thin 2D materials with strong and novel properties for nonlinear optics. 2D materials may be incorporated with scalable nanophotonic technologies via post-lithographic integration. This thesis presents fundamentals for nonlinear optical properties of the 2D materials and their application for nonlinear quantum optics. It first describes the electronic band structures of two prominent 2D materials, namely, graphene and monolayer MoS2. Their linear and nonlinear optical properties are analyzed and presented. The analysis of graphene's optical property uses an innovative first-order perturbative S-matrix formalism that systematically identifies various physical mechanisms contributing towards the optical Kerr nonlinearity. On the other hand, the analysis of the optical property of monolayer MoS2 adopts a massive Dirac Hamiltonian that leads to linear and nonlinear optical susceptibilities through a standard perturbative calculation. It turns out that, although its real Kerr nonlinear susceptibility is enormously large compared to bulk materials, graphene has an even larger imaginary Kerr nonlinear susceptibility that degrades coherence via strong two-photon absorption. Hence, graphene is not a suitable material for applications where coherence is essential. In contrast, monolayer MoS2 that has non-zero finite bandgap energy turns out to be a simultaneously suitably coherent and highly nonlinear material as its real-to-imaginary ratio of the Kerr nonlinear susceptibility can be adjusted through detuning the optical carrier frequency. The thesis also presents a metamaterial configuration based on Kerr nonlinearity of the monolayer MoS2 coupled to a local surface plasmon. The unique combination of a strong field enhancement from the plasmonic effect and the atomic thickness of highly nonlinear 2D materials constitutes an optical nonlinear oscillator. This system produces highly quantum behavior, namely, photon antibunching and non-Gaussianity. When built on rapidly developing nanophotonic platforms, 2D materials are promising nonlinear optical materials that have a vast potential for a future large-scale quantum information processing network.

Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials Book
Author : Chandra Sekhar Rout,Dattatray Late,Hywel Morgan
Publisher : Woodhead Publishing
Release : 2019-06-15
ISBN : 0081025785
Language : En, Es, Fr & De

GET BOOK

Book Description :

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Two dimensional Materials for Photodetector

Two dimensional Materials for Photodetector Book
Author : Pramoda Kumar Nayak
Publisher : BoD – Books on Demand
Release : 2018-04-04
ISBN : 9535139517
Language : En, Es, Fr & De

GET BOOK

Book Description :

Atomic thin two-dimensional (2D) materials are the thinnest forms of materials to ever occur in nature and have the potential to dramatically alter and revolutionize our material world. Some of the unique properties of these materials including wide photoresponse wavelength, passivated surfaces, strong interaction with incident light, and high mobility have created tremendous interest in photodetector application. This book provides a comprehensive state-of-the-art knowledge about photodetector technology in the range visible to infrared region using various 2D materials including graphene, transition metal dichalcogenides, III-V semiconductor, and so on. It consists of 10 chapters contributed by a team of experts in this exciting field. We believe that this book will provide new opportunities and guidance for the development of next-generation 2D photodetector.

2D Materials

2D Materials Book
Author : Anonim
Publisher : Academic Press
Release : 2016-06-24
ISBN : 0128043377
Language : En, Es, Fr & De

GET BOOK

Book Description :

2D Materials contains the latest information on the current frontier of nanotechnology, the thinnest form of materials to ever occur in nature. A little over 10 years ago, this was a completely unknown area, not thought to exist. However, since then, graphene has been isolated and acclaimed, and a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties has been created. This book is ideal for a variety of readers, including those seeking a high-level overview or a very detailed and critical analysis. No nanotechnologist can currently overlook this new class of materials. Presents one of the first detailed books on this subject of nanotechnology Contains contributions from a great line-up of authoritative contributors that bring together theory and experiments Ideal for a variety of readers, including those seeking a high-level overview or a very detailed and critical analysis

2D Materials for Nanoelectronics

2D Materials for Nanoelectronics Book
Author : Michel Houssa,Athanasios Dimoulas,Alessandro Molle
Publisher : CRC Press
Release : 2016-05-05
ISBN : 1498704182
Language : En, Es, Fr & De

GET BOOK

Book Description :

Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices. Comprised of chapters authored by internationally recognised researchers, this book: Discusses the use of graphene for high-frequency analog circuits Explores logic and photonic applications of molybdenum disulfide (MoS2) Addresses novel 2D materials including silicene, germanene, stanene, and phosphorene Considers the use of 2D materials for both field-effect transistors (FETs) and logic circuits Provides background on the simulation of structural, electronic, and transport properties from first principles 2D Materials for Nanoelectronics presents extensive, state-of-the-art coverage of the fundamental and applied aspects of this exciting field.

2D Materials for Photonic and Optoelectronic Applications

2D Materials for Photonic and Optoelectronic Applications Book
Author : Qiaoliang Bao,Hui Ying Hoh
Publisher : Woodhead Publishing
Release : 2019-10-19
ISBN : 0128154357
Language : En, Es, Fr & De

GET BOOK

Book Description :

2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers. Provides an in-depth look at boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, and more Reviews key applications for photonics and optoelectronics, including photodetectors, optical signal processing, light-emitting diodes and photovoltaics Addresses key technological challenges for the realization of optoelectronic applications and comments on future solutions

Flatland Nanophotonics

Flatland Nanophotonics Book
Author : Chitraleema Chakraborty
Publisher : Unknown
Release : 2018
ISBN : 0987650XXX
Language : En, Es, Fr & De

GET BOOK

Book Description :

"Semiconducting two-dimensional materials have gained increasing scientific interest within the last decade. Their electronic band gap in the visible range of the electromagnetic spectra, intriguing properties associated with spin and valley pseudospin of carriers and strongly bound excitons make them an excellent platform for both fundamental research, and technology tailored towards applications in nanophotonics and optoelectronics. Recently, 3D localized excitons in 2D materials have emerged as a novel source of single photon emitters, thus, unlocking the potential of these flatland materials in quantum optics and quantum information technology. The discovery of these localized excitons and the advances made in the study of quantum emitters in 2D materials are the major contributions of this thesis. In this thesis, we study quantum-confined excitons in monolayer transition metal dichalcogenides (TMDCs), a semiconducting class of 2D material. The effects of 3D confinement of excitons in the host monolayer TMDCs are investigated by optical spectroscopy. Low-temperature photoluminescence emission from the localized excitons exhibits narrow linewidths ranging from 100 fineV - 500 fineV with peak energies that are red-shifted from the delocalized excitons. Photon antibunching in intensity autocorrelation measurement confirms their single-photon nature. Magneto-optical studies reveal an exciton g-factor of fi10. Next, electric- field tunable devices based on van derWaals heterostructure are built around these localized emitters hosted by monolayer TMDC to study the quantum-confined Stark effect and demonstrate the electrical modulation of their photophysical properties such as emission energy, intensity, linewidth and fine structure splitting. We also investigate fully localized trions embedded in a charge-tunable van der Waals heterostructure. In such a device, direct electrostatic doping results in the formation of quantum confined trions with reduced electron-hole exchange interactions manifested by a reduction in the fine structure splitting and enhanced degree of circular polarization. This fosters the possibility of fabricating optically controlled spin-valley qubits with 2D materials. Lastly, we present various integrated devices based on 2D materials that are coupled with nanostructures such as metallic nano-antenna, nanowire-based waveguide and planar optical cavity based on distributed Bragg reflectors. These devices not only serve as a platform for solid-state quantum optics research but also provide building blocks for future nanophotonic and optoelectronic circuits."--Pages xvi-xvii.

Two dimensional Materials

Two dimensional Materials Book
Author : Pramoda Kumar Nayak
Publisher : BoD – Books on Demand
Release : 2016-08-31
ISBN : 9535125540
Language : En, Es, Fr & De

GET BOOK

Book Description :

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Quantum Confined Excitons in 2 Dimensional Materials

Quantum Confined Excitons in 2 Dimensional Materials Book
Author : Carmen Palacios-Berraquero
Publisher : Springer
Release : 2018-11-02
ISBN : 3030014827
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.

Graphene Photonics Optoelectronics and Plasmonics

Graphene Photonics  Optoelectronics  and Plasmonics Book
Author : Qiaoliang Bao,Huiying Hoh,Yupeng Zhang
Publisher : CRC Press
Release : 2017-09-07
ISBN : 1351767763
Language : En, Es, Fr & De

GET BOOK

Book Description :

Graphene has been hailed as a rising star in photonics and optoelectronics. The wonderful optical properties of graphene make possible the multiple functions of signal emission, transmission, modulation, and detection to be realized in one material. This book compiles and details cutting-edge research in graphene photonics, plasmonics, and broadband optoelectronic devices. Particularly, it emphasizes the ability to integrate graphene photonics onto the silicon platform to afford broadband operation in light routing and amplification, which involves components such as the polarizer, the modulator, and the photodetector. It also includes other functions such as a saturable absorber and an optical limiter. The book provides a comprehensive overview of the interrelationship between the operation of these conceptually new photonic devices and the fundamental physics of graphene involved in the interactions between graphene and light.

Comprehensive Nanoscience and Nanotechnology

Comprehensive Nanoscience and Nanotechnology Book
Author : Anonim
Publisher : Academic Press
Release : 2019-01-02
ISBN : 012812296X
Language : En, Es, Fr & De

GET BOOK

Book Description :

Comprehensive Nanoscience and Technology, Second Edition allows researchers to navigate a very diverse, interdisciplinary and rapidly-changing field with up-to-date, comprehensive and authoritative coverage of every aspect of modern nanoscience and nanotechnology. Presents new chapters on the latest developments in the field Covers topics not discussed to this degree of detail in other works, such as biological devices and applications of nanotechnology Compiled and written by top international authorities in the field

Plasmonics and Light Matter Interactions in Two Dimensional Materials and in Metal Nanostructures

Plasmonics and Light   Matter Interactions in Two Dimensional Materials and in Metal Nanostructures Book
Author : Paulo André Dias Gonçalves
Publisher : Springer Nature
Release : 2020-03-19
ISBN : 3030382915
Language : En, Es, Fr & De

GET BOOK

Book Description :

This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.

Quantum Nano Photonics

Quantum Nano Photonics Book
Author : Baldassare Di Bartolo,Luciano Silvestri,Maura Cesaria,John Collins
Publisher : Springer
Release : 2018-09-19
ISBN : 9402415440
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.

Semiconductor Nanophotonics

Semiconductor Nanophotonics Book
Author : Michael Kneissl,Andreas Knorr,Stephan Reitzenstein,Axel Hoffmann
Publisher : Springer Nature
Release : 2020-03-10
ISBN : 3030356566
Language : En, Es, Fr & De

GET BOOK

Book Description :

This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.

2D Functional Nanomaterials

2D Functional Nanomaterials Book
Author : Ganesh S. Kamble
Publisher : John Wiley & Sons
Release : 2021-10-11
ISBN : 3527823948
Language : En, Es, Fr & De

GET BOOK

Book Description :

2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.

2D Advanced Functionalized Inorganic Nanomaterials

2D Advanced Functionalized Inorganic Nanomaterials Book
Author : Ganesh S. Kamble
Publisher : John Wiley & Sons
Release : 2021-12-06
ISBN : 3527346775
Language : En, Es, Fr & De

GET BOOK

Book Description :

Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends in graphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.